
Redistributing the Costs of Volumetric
Denial-of-Service Mitigation

by

Samuel DeLaughter

B.A., Hampshire College, 2008
S.M., Massachusetts Institute of Technology, 2019

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Samuel DeLaughter. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Samuel DeLaughter
Department of Electrical Engineering and Computer Science
August 29, 2023

Certified by: Karen Sollins
Principal Research Scientist
Computer Science and Artificial Intelligence Lab
Thesis Supervisor

Accepted by: Leslie Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Redistributing the Costs of Volumetric
Denial-of-Service Mitigation

by

Samuel DeLaughter

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2023 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Volumetric Denial-of-Service (DoS) attacks pose a severe and exponentially increasing
threat to the Internet. Existing mitigations provide valuable stop-gaps but fail to address
the root cause, and the overhead they incur is poorly understood. To combat these attacks
we present a protocol-agnostic approach to DoS mitigation that moves overhead away from
service bottlenecks, towards the network edge and onto attackers themselves. We observe
that the vast majority of attacks rely on a small subset of packet types which are indi-
vidually identical to legitimate packets, but generated far more often by attackers than by
regular clients. Making such packets marginally more difficult to generate can significantly
reduce flood volumes without harming legitimate clients. We design and implement two
novel mitigations in TCP following this approach, to combat the ubiquitous SYN Flood at-
tack. The first is largely a toy example illustrating how simple packet padding can rate-limit
bandwidth-constrained attackers, while the second is a more robust approach using minia-
ture proofs-of-work to restrict the common CPU-bound attacker. We also present a rigorous
experimental methodology and novel suite of metrics for more accurately evaluating the ef-
ficacy and overhead of arbitrary DoS mitigations across changes in attack, client behavior,
and network topology. We use this measurement framework to evaluate our proposed mit-
igations in a controlled network testbed. Both mitigations exhibit negligible overhead, and
while their efficacy is subjective they succeed in completely nullifying potentially devastating
SYN floods in certain contexts. Beyond our immediate findings in TCP, this work is broadly
applicable to the design of DoS-resilient network protocols and internet architectures.

Thesis supervisor: Karen Sollins
Title: Principal Research Scientist
Computer Science and Artificial Intelligence Lab

3

4

Acknowledgments

Completing this thesis has been a wonderful opportunity but also a tremendous challenge. I
am eternally grateful to all those who have supported me through this journey. My advisor,
Karen Sollins, has provided seven years of unparalleled mentorship. She is kind, patient,
infinitely generous with her time, and always knows what questions to ask to “turn a prob-
lem on its head.” My committee members, David Clark and Mohammad Alizadeh, both
provided exceptionally thoughtful feedback on my thesis, and somehow made my defense
a calm and pleasant experience. Thanks to Arthur Berger, Steve Bauer, Bill Lehr, Philipp
Richter, Cecilia Testart, Leilani Gilpin, and all the other members of ANA and IPRI for their
invaluable thought partnership over the years. Thank you to my family, for encouraging my
interest in computers and the Internet from a very early age, and for always supporting my
pursuit of knowledge. To my wonderful friends, for reminding me to listen to music, play
games, laugh, and enjoy the process. Finally, thank you to my beloved partner and best
friend, Kristína Moss, for being by my side in this and every other adventure. Without her
encouragement I would never have considered applying to this program, and without her
endless love and support I would never have made it through.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 15

1 Introduction 17
1.1 Structure of Remaining Chapters . 23
1.2 Key Contributions . 23

2 Problem Statement 25

3 Background 30
3.1 DoS Attack Classification . 31

3.1.1 Volumetric vs. Targeted Attacks . 33
3.1.2 Address Spoofing . 35
3.1.3 Packet Types . 37
3.1.4 Other . 38

3.2 Existing DoS Mitigations . 39
3.2.1 Traffic Filtering . 40
3.2.2 Over-Provisioning . 42
3.2.3 Protocol Modifications . 43
3.2.4 Summary . 46

3.3 DoS Measurement . 47
3.4 Proof-of-Work . 50

4 Designing Trustworthy Independent Packets 55
4.1 General Design . 59
4.2 Implementations in TCP . 62

4.2.1 eBPF . 62
4.2.2 SYN Padding . 66
4.2.3 SYN Proof-of-Work . 71

7

4.3 Summary . 88

5 Metrics and Measurement Techniques 90
5.1 Experiment Model . 92
5.2 Testbed Environment . 94
5.3 Performance Metrics . 96
5.4 Context-Specific Metrics . 98
5.5 Cross-Context Metrics . 101
5.6 Summary . 106

6 Empirical Analysis 108
6.1 Experiment Topology . 109
6.2 SYN Cookies . 113
6.3 SYN Padding . 121

6.3.1 Traffic Rate/Volume Reduction . 122
6.3.2 Client Overhead and QoS Impact . 128

6.4 SYN PoW . 136
6.4.1 Traffic Rate/Volume Reduction . 136
6.4.2 Client Overhead and QoS Impact . 141

7 Discussion 147
7.1 Non-TCP Implementations . 148

7.1.1 Padding . 148
7.1.2 Proof-of-Work . 150

7.2 IPv6 Support . 152
7.3 Hash-Sorted Queuing . 152
7.4 Protocol and Architecture Comparison . 155
7.5 Additional Metrics . 156

7.5.1 Economic Cost Modeling . 156
7.5.2 Time-Series Analysis . 158
7.5.3 Estimating Attack Probabilities . 159

7.6 Attack Traffic Generation . 159
7.7 Data Analysis Pipeline . 161
7.8 Deployment Considerations . 162
7.9 Summary . 163

8 Conclusion 165

Bibliography 169

8

List of Figures

3.1 Basic operation of a Proof-of-Work (PoW) system. The prover repeatedly
changes some portion of its message (the nonce) and recomputes the message
hash, until that hash exceeds a given threshold. The verifier performs a single
operation of the same hash to confirm whether incoming packets meet the
threshold. 51

4.1 Basic operation of the prover and verifier roles in our SYN Padding mitigation.
The prover pads all SYNs to a total length of 80Bytes before sending, and the
verifier drops any incoming SYNs below that length. 70

4.2 Basic operation of the prover and verifier roles for our SYN PoW mitigation,
including essential contents of the message digest. Before sending a SYN, the
prover repeatedly alters part of the message digest (the nonce) and recomputes
the digest’s hash value (ℎ) until it exceeds some threshold (𝜃). The verifier
then checks the hash values of incoming SYNs against its own threshold to
decide whether they should be dropped or accepted. All other packet types
are sent/accepted normally by both roles. 73

5.1 A simplified example of the sort of network topologies used in our experiments.
Actual experiments use larger networks to improve realism, but this represents
a minimal set of components. 93

5.2 Our four experiments and key context-specific metrics. 101
5.3 An example of how we might expect a DoS mitigation to change the way QoS

depends on attack rate. This dependency can be defined by some function 𝑄
parameterized by the attack rate 𝑟, which morphs to function �̄� when a miti-
gation is deployed. Deploying a mitigation imposes some amount of overhead
on the system, but hopefully improves QoS under some effective range of at-
tack rates. Under extremely high rates of attack client QoS will approach zero
regardless of the mitigation(s) deployed. We define the mitigation’s efficacy
with respect to attack rate as the area of the dark green shaded region to the
bottom right of 𝑟, minus the area of the light red shaded region to the upper
left. 103

9

5.4 An example of how our perspective of Figure 5.3 might be skewed by a long-tail
probability distribution of attack rates. Higher rates of attack are significantly
less likely to occurr, meaning we should place less weight on their effects.
By multiplying Quality of Service by probability of attack on the y-axis, we
see that this distribution augments overhead from no/low-rate attacks and
diminishes efficacy from high-rate attacks. 104

6.1 The network topology used in our experiments. Nodes are named with an
abbreviation of their role: s for server, c for client, a for attacker, and r for
router. The labeled bottleneck link between routers r0 and r4 can be con-
strained using network emulation. By default it is set to 1Gbps capacity, 1ms
latency, and 0% loss. We label the four subnets A through D to help distin-
guish results from clients in different locations. We often observe drastically
different behavior between these subnets, particularly when comparing the
two local subnets (A and B) against the two remote ones (C and D). 111

6.2 The packet exchanges that typify our client applications. The TCP Setup
client initiates a connection and then immediately (but cleanly) tears it down
in a 5-packet exchange. The HTTP clients retrieve files from the server using
some number of PUSH-ACK packets. Transferring a 1KB file typically takes
two PUSH-ACKs (and two corresponding ACKs) as depicted, while larger
files will take more. A 1MB file may take ∼ 30 − 50. In longer exchanges,
the server will often send several PUSH-ACKs in a burst (as its window size
permits) followed by an equal burst (assuming none are lost) of ACKs from
the client, rather than the consistent alternation depicted here. 115

6.3 Baseline performance based on client application and location, for our analysis
of SYN Cookies. As before we see better performance for clients that are
local to the server, and for those running simpler applications requiring fewer
round trips per transaction. Constraining the bottleneck link from 1Gbps to
100Mbps has little impact except for remote clients running the HTTP 1MB
application, which has significant throughput requirements. Their already
slow service drops to near zero. 116

6.4 The overhead of deploying SYN Cookies at the server. It is negligible relative
to variance in the baseline, with a mean near zero regardless of client location,
client application, or bottleneck capacity. The one extreme outlier of 100%
overhead represents an unrelated device failure, not an effect of SYN Cookies. 118

6.5 The threat posed by our SYN flood attack, for our analysis of SYN Cookies.
HTTP client applications experience a complete disruption of service with
100% threat, while the simpler TCP Setup client manages to complete occa-
sional transactions but at a greatly reduced rate. Bottleneck capacity, client
location, and number of attackers all have little impact, as even the least
potent attack is still devastating across all contexts. 119

6.6 The efficacy of SYN Cookies at mitigating high-volume SYN Flood attacks.
Local clients experience near 100% efficacy, while remote ones see a steady
decline as the number of attackers increases. 120

10

6.7 The change in attack volume (in terms of thousands of packets per second)
caused by the addition of SYN Padding. Dotted black lines are drawn to
connect points at the same x-value in order to help visualize the difference. . 124

6.8 The change in attack rate in terms of Mbps caused by the addition of SYN
Padding. Dotted black lines are drawn to connect points at the same x-value
in order to help visualize the difference. The dashed black line shows the
equation y=x, representing the maximum possible attack rate that could get
through the bottleneck. 126

6.9 The percent change in attack rate and volume caused by the addition of SYN
Padding. The vertical dashed line indicates the attacker’s maximum attack
rate without padding when the bottleneck is unconstrained. As long as the
bottleneck capacity is at or below this value (or very slightly above it), SYN
Padding succeeds in reducing the attack volume by approximately 36%, at
the cost of a roughly 10% increase in the attack rate. 127

6.10 Baseline performance across client types, without the presence of an attack
or mitigation. Local clients are positioned on the near-side of the bottleneck
link to the server, remote clients are positioned on the far side. As expected,
we observe significantly better performance for local clients, and for simpler
transactions that require fewer packet exchanges to complete. 129

6.11 Overhead of our SYN-Padding mitigation compared with SYN-Cookies and
the two combined. In all mean overhead is extremely near zero, with 95𝑡ℎ

percentile confidence interval within +/− 10%. 130
6.12 The threat posed by the attack. Lines for all HTTP client applications are

overlapping at 100%, obscuring most of them. This includes local and remote
clients attempting both 1KB and 1MB HTTP transfers. The simpler TCP
clients manage to squeeze through a few occasional transactions, with slightly
less threat to remote clients (because they start from a lower baseline) and
under a less constrained bottleneck link (because fewer packets are dropped).
These differences are faint, with the threat above 99% of in all contexts, but
they do match our expectations. With a weaker attack and reduced threat
we would expect to see the same differences magnified. 131

6.13 This figure shows efficacy of SYN Padding against a smart (padded) SYN
Flood as a percentage of the threat mitigated. The left-hand column shows
results for local clients (all near 100%) and the right-hand shows results for
remote clients (all near 0%). Different rows show different verifier locations,
though we do not observe a significant difference between them in this context.
Bottleneck link capacity is shown on the x-axis but also makes no significant
difference here. For local clients the attack is weak enough that we’re able to
fully mitigate the threat, yet for remote clients it is so strong that they can
barely complete a single transaction. An extra network hop and a couple of
milliseconds of extra latency makes an extraordinary difference. 133

11

6.14 This figure shows efficacy of SYN Padding against a dumb (unpadded) SYN
Flood as a percentage of the threat mitigated. We also compare against SYN
Cookies, and test the two mitigations simultaneously. The left-hand column
shows results for local clients (all near 100%) and the right-hand shows results
for remote clients, where we see an interesting divergence from the smart
attack in Figure 6.13. Efficacy is again near zero when the verifier is deployed
at the server or its first-hop firewall router (r0), but looking at the middle row
we see it jump up to 100% when the verifier is deployed at the edge routers
(r1-r3). In this case the verifiers are able to drop the entire flood one hop
away from its source, before it is able to exhaust critical network resources.
This clearly illustrates the importance of verifier location, and the value of
moving verification away from targeted devices towards the attack source.
Again we see that client location is the single most important factor however,
even obscuring effects of constraining the bottleneck link down to 50Mbps –
even that weakened attack is sufficient to take remote clients offline. Note that
we only show data for SYN Cookies alone when the verifier is located at the
server (top row) since they cannot be implemented elsewhere. Performance of
the two mitigations combined is at least equivalent to that of SYN Padding
alone, and for remote clients with verification at edge routers SYN Padding
vastly outperforms SYN Cookies. 135

6.15 The rate-limiting effect of our SYN PoW mitigation against a single volumetric
SYN flooder, based on the expected number of hash iterations per packet, 𝑘.
We compare “smart” floods in which the attacker performs the proof against
traditional dumb floods in which they send SYNs as quickly as possible. The
dashed line represents the equation 𝑦 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑡𝑡𝑎𝑐𝑘𝑅𝑎𝑡𝑒

𝑘
, the optimal rate

reduction we can expect to achieve against a dumb flood in which 𝑘−1
𝑘

of attack
packets are dropped. We use a dual y-axis to indicate both the attack’s bit-
rate and its packet-rate, which are directly proportional to one another due
to the fixed size of attack packets. 138

6.16 This figure mirrors Figure 6.15, but with the attacker’s packet generation
process restricted to 10% of its available CPU resources. The result shows
almost identical trends at 1

10

𝑡ℎ scale, indicating that our attacker was already
CPU-bound, and that the SYN-PoW mitigation scales well with changes in
attacker resources. It doesn’t matter how severe the attacker’s CPU bottle-
neck is, only that it is their primary bottleneck. We again succeed in dropping
almost exactly 𝑘−1

𝑘
of all packets in the “dumb” SYN floods, and up to 93.5%

of packets in “smart” floods (when 𝑘 = 256). 140
6.17 Baseline performance across client types, without the presence of an attack

or mitigation. Local clients are positioned on the near-side of the bottleneck
link to the server, remote clients are positioned on the far side. As expected,
we observe significantly better performance for local clients, and for simpler
transactions that require fewer packet exchanges to complete. 142

12

6.18 Overhead of our SYN PoW mitigation compared with SYN-Cookies and our
eBPF No-Op program. In all cases mean overhead is extremely near zero,
with 95𝑡ℎ percentile confidence interval extending to +/- 5%. Bars are so
narrow that the colors are difficult to see, but their left-to-right order matches
the top-to-bottom order in the legend. 143

6.19 The threat experienced by clients during the attack as a percentage of the
Baseline. We see that the threat is absolute for HTTP clients with all lines
overlapping at 100%, and is consistently above 98% for the simpler TCP Setup.144

6.20 The Efficacy of our SYN PoW mitigations, compared with that of SYN Cook-
ies, for local and remote clients across varying flood types. Local clients (in
subnets A and B) achieve extremely high efficacy in all cases, often nearing
100% and only dipping to near 80% when faced with the full strength of a
dumb flood from 8 attackers. For remote clients the threat of the dumb flood
is simply too severe to salvage any performance except when attackers are
limited to below 50% of their normal CPU resources. With the smart flood
however, they acheive near 100% efficacy against 4 attackers. In the 8-attacker
smart flood we see the most significant impact of attacker CPU limitations
and the clearest difference between 𝑘 values. As the CPU limit decreases,
efficacy moves from 0% up to 50% for 𝑘 = 8 and all the way up to 100% for
𝑘 = 64, verifying that higher proof thresholds can yield higher efficacy. Note
that with sufficiently strong attack we would eventually see efficacy drop to
zero for local clients, and with weaker attacks we would see it increase to
100% for remote clients. Finding the precise effective range for either group
would require extensive trial and error. We can say that in this context the
mitigations are highly effective for local clients and occasionally effective for
remote ones. 146

7.1 An illustration of our proposed Hash-Sorted Queuing mechanism. The verifier
computes the hash value of each incoming packet and assigns them to different
queues accordingly. Packets with high-valued hashes are given priority while
those with the lowest values may be dropped. The verifier can wait until the
standard queue becomes full to begin dropping, or it may choose to take a
more proactive approach and drop any packet with a hash value below the
threshold 𝜃 regardless of queue length. During periods of extreme demand,
some packets may need to be dropped before they reach the verifier. We
assume the hash output is 32 bits in length, allowing for hash values ranging
from 0− 232. 153

13

7.2 The database schema used to organize results of our experiments, designed
to meld the structure of our measurement framework with that of the De-
terLab testbed on which our experiments are conducted. Experimentation
in DeterLab starts by creating a revision: an abstract definition of a net-
work topology. From that revision we can then create a materialization:
a manifestation of the topology on a specific set of hardware in the testbed.
Each materialization has some set of hosts, which may be a combination of
physical devices and virtual machines. Our measurement framework operates
in units of experiments, each of which includes a set of the four core mea-
surements (UB, MB, UA, and MA) described in §5.4. Typically we conduct
multiple experiments in a single session, systematically testing all possible
permutations from a given set of parameters. Each experiment results in a
large number of data points, which are summarized into results. 164

14

List of Tables

4.1 The mandatory options that all TCP implementations must support, and the
length in bytes each one adds to the TCP header. Additional options to sup-
port selective acknowledgement (SACK), timestamps, and window scaling are
recommended, but only the three in this table are required for basic interop-
erability. Our SYN Padding implementation relies on an early End of Option
List option, but copies of the No-Operation option can also be used. 68

4.2 Contents of the SYN PoW digest that is input to the hash function. Source
and destination ports are included to protect against spoofing attacks, while
the sequence and acknowledgement number fields are used to encode the nonce. 79

6.1 Baseline latencies between each client subnet and the server. For one client in
each subnet we perform 100 pings with a 0.1 second interval and report the
minimum, mean, maximum, and standard deviation. Local clients in subnets
A and B observe average RTTs of <0.25ms and <0.5ms respectively. Remote
clients in subnets B and C also have very fast connections with <3ms average
RTT, yet this is an order of magnitude greater than for clients in subnet A.
No packet loss is observed. 112

6.2 A comparison of our experimental results with the theoretical model for SYN
PoW’s ability to reduce the rate/volume of “dumb” SYN floods. As expected,
the verifier is able to drop almost exactly 𝑘−1

𝑘
of all attack packets. The

rightmost column group indicates the mitigated attack rate as a percentage
of the maximum (unmitigated) attack rate of 164.1 Mbps. We succeed in
reducing the attack to a small fraction of its original volume, with efficacy
that matches expectation precisely. 139

15

16

Chapter 1

Introduction

The Internet has become essential to nearly every aspect of modern society, from commerce

to entertainment to national security. With this tremendous utility comes an equally great

risk. When large portions of the Internet go down the whole world seemingly grinds to a halt.

Sometimes this happens by mistake (like a misconfiguration in BGP or DNS [1]) or by acts

of nature (like sharks chewing through undersea cables [2]), but more often than not such

outages result from deliberate Denial-of-Service (DoS) attacks. DoS is a broad term that

refers to countless, highly diverse attack vectors. Generally, the attacker’s goal is to disrupt or

degrade some ongoing communication over the network, and/or to prevent new connections

from being established. Some attacks use precisely crafted packets to exploit vulnerabilities

in protocols or their implementations, but an increasing majority are brute-force volumetric

attacks. Ordinary packets are generated in such large quantities that receivers are forced to

discard or de-prioritize traffic from legitimate users.

In the past decade these volumetric DoS attacks have become ubiquitous, driven by

desire for profit, revenge, chaos, and destruction. As we will discuss in Chapter §2 they are

17

increasing exponentially in both frequency and scale, with hundreds or even thousands of

unique attacks now observed every day. The largest floods have reached several terabits per

second and millions of packets per second. Individual packets in these attacks are typically

indistinguishable from those sent by legitimate users, but each one consumes a small amount

of resources at its destination and at each hop through the intervening network. Such flooding

attacks exploit one of the fundamental design principles of the Internet architecture, that

any device with an IP address can send packets to any other device with an IP address. This

open exchange of information is precisely what has facilitated the explosion of e-commerce

and other online services, allowing businesses to receive traffic from new customers all over

the world. Yet it is also what enables attackers to generate excessive quantities of unsolicited

traffic, and to have it dutifully forwarded to the target. Devices face an intrinsic tension

between the utility of processing traffic from unfamiliar endpoints and the costs of doing so.

A wide variety of mitigations have been designed and deployed to combat this threat:

various approaches to detecting and filtering out bad packets; additional capacity added to

process the bad traffic along with the good; and some attempts to modify network proto-

cols to build in more DoS resilience. While these efforts serve as valuable stop-gap mea-

sures their costs are poorly understood. Traffic filtering can be unreliable and add delays,

over-provisioning requires monetary investment, and protocol modifications often add more

complexity and communication to the network than they alleviate. Mitigations designed for

older low-rate floods also remain widely deployed despite lacking empirical knowledge about

how they behave under modern attacks. On the whole, existing mitigations fail to address

the underlying resource imbalances that facilitate volumetric DoS attacks, instead imposing

additional complexity and resource demands on the very devices they aim to protect. This

18

thesis presents a novel approach to reevaluating and redistributing the costs of mitigation,

shifting them away from bottleneck resources towards the network edge and onto attackers

themselves.

At a high level, our approach begins by re-framing DoS mitigation as a performance

optimization problem. Rather than attempting to prevent denial-of-service outright, we seek

to maximize the Quality of Service that clients are able to receive. This entails minimizing

both the damage an attack can cause, and the overhead a mitigation imposes outside periods

of attack. Our core strategy for achieving these goals is to shift resource bottlenecks in the

network, not only loosening bottlenecks at legitimate devices but also squeezing existing

bottlenecks at attackers. We aim to drop bad packets as early as possible using as few

resources as possible, and/or to limit the ability of attackers to generate large volumes of

unsolicited traffic in the first place.

We observe that the vast majority of volumetric attacks rely on a small handful of similar

packet types which are easy to generate, relatively expensive to receive, and widely expected

to be received from unfamiliar sources. While ordinary clients generate exactly the same

types of packets, they do so many orders of magnitude less frequently than attackers. We

can leverage this natural asymmetry by making such packets marginally more difficult to

generate, causing a large rate-limiting effect for attackers without significantly impacting

the performance of others. Taking this a step further, senders can include a self-contained

proof of resource expenditure in their packets which can then be verified by receivers, in a

concept we call Trustworthy Independent Packets (TIPs). Assuming proofs cannot be

forged, attackers have no possible method to generate large quantities of valid proof-bearing

packets. Either they must reduce their rate/volume of attack as time or other resources are

19

diverted to generating proofs, or else send packets without proofs which can be efficiently

dropped once they reach a verifier. This allows us to bootstrap trust between unfamiliar

endpoints using a single packet, without relying on prior state or requiring prior/further

communication.

As a first proof-of-concept to test this approach, we implement two novel mitigations

against the ubiquitous TCP SYN flood attack. We assume attackers are rate-limited by one

of two primary resource bottlenecks – for some this will be outgoing bandwidth, but for most

it is CPU cycles. To limit bandwidth-constrained attackers we present SYN Padding (§4.2.2),

an extremely simple mitigation that increases the minimum length of TCP SYN packets,

forcing attackers to send fewer, longer packets. Here the proof of bandwidth expenditure is

implicit in the packet’s length, and verification is as simple as dropping any packets that are

too short. This is largely a toy example designed to illustrate the basic concepts of TIPs,

but it proves highly effective when per-packet (rather than per-bit) costs of an attack are

dominant, and also sheds light on a general link between packet length and DoS resilience.

Our second mitigation, SYN-PoW (§4.2.3), adds a miniature proof-of-work (PoW) to TCP

SYN packets in order to rate-limit CPU-bound attackers. The difficulty of PoWs is tunable,

with higher difficulty providing a greater reduction of attack volume in exchange for increased

overhead at legitimate clients. For both mitigations verification can be performed anywhere

in the network, not just at the destination, enabling packets with insufficient proofs to be

dropped as early as the first hop.

We implement both mitigations as extended Berkeley Packet Filter (eBPF) programs

which are efficient and portable, allowing us to deploy on most modern hardware in a matter

of seconds, without modifying any kernel code. We provide copies of our source code for

20

these implementations along with the rest of our research data [3], to facilitate further ex-

perimentation and real-world deployment. In order to evaluate these proposed mitigations,

we conduct an extensive set of controlled experiments in a physical network testbed. We

compare them against each other and against the common SYN Cookies mitigation, eval-

uating their efficacy at mitigating attacks and the overhead they incur outside periods of

attack, and how both these measurements are influenced by the volume of attack, choice of

application, topology of the network, and other variables. These experiments demonstrate

that our SYN Padding and SYN PoW mitigations both incur negligible overhead at legiti-

mate clients, and both provide extremely high efficacy at reducing attack impact in certain

(realistic) contexts.

Both mitigations can be tuned to increase efficacy at the cost of overhead. For SYN

Padding this is limited by the maximum TCP header length, allowing us to at most double

the length of packets (at most halving the volume of attack). SYN PoW offers far more

flexibilility, as it is bounded by subtleties of implementation rather than immutable aspects

of the protocol’s design. Our eBPF-based implementation is limited to one million CPU

instructions worth of work per packet, while a direct in-kernel implementation would be

bounded only by the nonce length (32 bits), allowing for proofs representing up to 232 − 1

average hash function iterations per packet. Padding- and PoW-based mitigations may both

be applicable in other protocols as well, and if incorporated through the initial design process

we could fully optimize the efficacy/overhead trade-off with no barriers to tunability.

Our experiments also show that SYN Cookies fail to protect against high-volume floods.

While they were not explicitly designed with this modern threat in mind, this deficiency is not

immediately obvious. Fortunately they do not exhibit significant overhead in our experiments

21

either, but it is important to emphasize that while SYN Cookies may be a valuable tool for

DoS mitigation they alone are insufficient against volumetric attacks. The mitigations we

propose have the advantage of portable verification, dislocated from the server, which allows

them to drop bad packets closer to their source and scale to protect against larger floods.

The metrics and methodologies we use to conduct our experiments constitute a signifi-

cant component of this research in and of themselves. They are carefully designed to address

common issues we have observed across prior work. First, we focus on client-side application-

layer indicators of client Quality of Service, rather than more subjective low-level metrics

like throughput or latency. Second, we separate a mitigation’s efficacy at reducing an at-

tack’s threat from its overhead outside periods of attack, and discuss how to weigh those two

key metrics against one another to determine whether a mitigation is truly worth deploying

in a given context. Third, we use a physical network testbed to ensure realistic resource

bottlenecks, and measure how changes to myriad variables of our network topology influence

baseline performance, attack impact, and mitigation utility. This measurement framework

has broad applicability beyond the evaluation of our mitigations – it can also be used to com-

pare the DoS vulnerability/resilience of arbitrary network protocols, internet architectures,

network topologies, operating systems, applications, etc.

In summary, we argue that the threat of volumetric DoS attacks must be reexamined

from an architectural perspective. Attackers disrupt essential services with such ease, fre-

quency, and impunity that the problem has come to undermine the Internet’s most basic

functionalities. By re-designing key packet types we can make high-volume floods impossi-

ble to generate, and/or trivial to detect and drop near their source. By leveraging natural

differences in behavior and resource availability between clients and attackers, we can do so

22

without jeopardizing baseline performance.

1.1 Structure of Remaining Chapters

The remainder of this thesis is structured as follows. After restating our key contributions

to conclude this chapter we next define the specific problems we are attempting to solve in

Chapter §2. We then present background information and discuss related work in Chapter

§3, including a more formal definition of the broader DoS problem, taxonomies of known

DoS attacks, existing approaches to mitigation, and techniques for mitigation measurement

and evaluation. We also provide technical background and a brief history on Proof-of-Work

systems to inform discussion of our SYN PoW mitigation. Chapter §4 then provides further

detail on our mitigation designs, including general considerations for our TIPs approach as

well as specific implementation details for our SYN Padding and SYN PoW mitigations in

TCP. In order to evaluate these mitigation designs, we have developed a rigorous experi-

mental methodology and robust suite of metrics, which are presented in Chapter §5. There

we also discuss the testbed on which our experiments are performed. Details of those ex-

periments and our analysis of the results are presented in Chapter §6. We then discuss

limitations to this work as well as potential extensions, future work and other miscellaneous

considerations in Chapter §7 before finally concluding in Chapter §8.

1.2 Key Contributions

The primary contributions of this thesis are as follows:

23

• We re-frame the broad domain of volumetric DoS mitigation as a more precise and

familiar problem of performance optimization.

• We explore the intrinsic connection between packet length and DoS resilience, and show

how padding can facilitate a trade-off between attack volume (packets-per-second) and

attack rate (bits-per-second).

• We illustrate how adding miniature proofs-of-work to certain packets can significantly

rate-limit attackers and enable distributed, self-contained detection of spurious packets

that minimizes overhead at vulnerable devices.

• We design and implement both padding- and PoW-based mitigations against the ubiq-

uitous TCP SYN flood, which comply with current standards and can be easily de-

ployed on most modern systems without altering the kernel.

• We define an experimental methodology and set of metrics which can be used to eval-

uate arbitrary changes in network protocols, architectures, and topologies.

24

Chapter 2

Problem Statement

The current Internet Architecture is inherently vulnerable to volumetric Denial of Service

attacks. Those who wish to offer publicly accessible services face a tension between their

desire to receive traffic from new users and the resources that must be consumed or reserved

to handle that traffic. A sufficiently large quantity of individually harmless packets will

overwhelm even the most capable receivers, forcing them to drop packets or exhaust some

other critical resource that disrupts service for legitimate clients. The magnitude of this

problem has grown exponentially in the past decade, with attackers leveraging the expansion

of global computing power in a sinister shadow of Moore’s Law [4], [5]. This is a threat to

the Internet’s basic duty of packet delivery that demands remediation.

Imagine a server is an ice cream parlor that offers free samples to its customers. Attackers

take a sample, immediately re-enter the line, take another, and repeat endlessly without ever

buying a thing. On the Internet this problem is compounded by the fact that many attackers

are capable of spoofing their addresses – masking their identity – allowing them to evade

detection and effectively hold thousands of places in line at once. Not only does the store

25

run out of ice cream to serve its paying customers, but those customers can rarely even make

it in the door. Fake customers may even start to block streets as they flock to the shop,

preventing other nearby businesses from serving their customers as well.

The problem we face today is akin to an entire nation waiting in line for a single store.

Volumetric DoS attacks first crossed the 1 Tb/s threshold in the infamous 2016 Mirai attacks

targeting DNS provider Dyn among others [6], and less than one year later Google observed a

2.54 Tb/s attack [7]. The frequency of attacks is also extreme and seemingly ever-increasing

– in Q1 of 2022 alone Kaspersky observed 91,052 individual attack events, surpassing the

previous quarter by 1.5x and surpassing Q1 of 2021 by 4.5x [8]. Microsoft’s Azure cloud

platform mitigated over 520,000 unique attack events in 2022, with a minimum of 680 attacks

per day[9]. Rates may fluctuate with daily, weekly, or seasonal cycles (as does all Internet

traffic), and they may dip temporarily as bugs are patched and bad actors are apprehended by

law enforcement, but the long-term trend appears to be towards volumetric attacks becoming

exponentially more severe and more common.

As society becomes increasingly reliant on networked services, the potential ramifications

of these attacks are becoming ever more dire. The Internet is now an essential tool for com-

munication, commerce, entertainment, education, governance, and healthcare. DoS attacks

even threaten national security – the US government publishes guidance for federal agencies

on understanding and responding to them [10], [11]. It is also a signatory of the Common

Criteria Recognition Arrangement (CCRA), a broadly international agreement based on

the Common Criteria for Information Technology Security Evaluation (CC), which includes

multiple provisions that explicitly mention Denial-of-Service [12]. Simply put, DoS attacks

threaten to disconnect people from one another, and that concerns everyone.

26

To a large extent the recent increase in attack volume and frequency can be attributed

to the proliferation of smart devices that constitute the so-called Internet-of-Things (IoT).

Billions of these devices have been connected to the Internet: security cameras, digital video

recorders, lightbulbs, toasters, and all manner of other household devices. These devices are

typically manufactured by companies that specialize in making those household devices, and

that have little if any experience developing secure distributed systems. This combined with

a lack of regulation in the space has resulted in devices with egregious vulnerabilities, like

using common default passwords and leaving telnet and other vulnerable ports open for no

reason. Some devices even lack the capability to receive security patches if and when these

vulnerabilities are discovered, and without regulation mandating device recalls or consumer

notification vulnerable devices are likely to remain in use for extended periods of time[13]–

[15]. Typically IoT devices have limited computing resources which may preclude them from

running standard security protocols like TLS, making them even more difficult to secure [16].

However, we will demonstrate in Chapter §4 that the existence of such resource limitations

at individual attacker devices can be used to our advantage in designing volumetric DoS

mitigations.

In terms of the actual attack types being launched, there is a very wide variety but with

a non-uniform distribution. Looking longitudinally TCP SYN floods have been the single

most dominant vector, and according to most sources they still account for approximately

50% of all floods today. In recent years, short- and zero-payload UDP floods have become

increasingly common, accounting for most of the remaining attacks and by some accounts

even surpassing SYN floods. In the first two quarters of 2022 Cloudflare reported that

SYN floods accounted for 57.4% and 53.6% of observed “network attacks” [17], [18], while

27

Kaspersky reported them as 22.37% and 20.25% of observed “DDoS attacks” for the same

periods with UDP flooding instead taking first place[8], [19]. Microsoft Azure reported 63%

of all DoS attacks they observed in 2022 were TCP flooding, though that figure includes

ACK floods and other TCP floods in addition to SYNs, and a more detailed breakdown was

not provided. Beyond these are a multitude of other vectors – several sources (including

those listed above) have noted a recent uptick in HTTP and certain other application-layer

attacks, but not nearly significant enough to compete with SYN and UDP floods.

We observe that these two most common attack vectors both rely on packet types that

devices expect to receive from new, untrusted sources. DNS reflection/amplification attacks,

which are commonly ranked as the third most common vector, also fall into this category.

Herein lies our central motivating problem: a willingness to handle such packets is funda-

mental to the Internet’s operation, but the act of handling them can render it inoperable.

The cost of handling a packet varies depending on its contents and the roles of the device

acting on it. A server receiving a TCP SYN from new IP address will allocate space in

a limited segment of memory to store connection information and expend computational

resources constructing a SYN-ACK in response. A UDP packet from a new source will

prompt a server to check if it has a service running on the specified port which takes a

small but non-zero amount of work – if not it may expend some effort to generate an error

in response, or if so it may be prompted to transmit a large file or perform some other

expensive action. Forwarding each of these packets and the responses they elicit through

the network also incurs costs at every hop, adding CPU overhead to switches, filling queues,

and forcing legitimate traffic to be dropped. Extremely small TCP SYNs and zero-payload

UDP packets magnify this per-packet damage. Assuming a fixed bit-rate of incoming data,

28

smaller packets mean more packets per second and more packet processing overhead. At a

minimum, every device the packet transits will need to perform a routing lookup, decrement

the time-to-live (TTL) field, and update the IP checksum. This overhead is near-constant

for every IP packet received, regardless of size.

There is an inherent threat posed by any packet type that is a) cheap to generate, b)

expensive to receive, and c) necessary to receive from untrusted sources. We propose to

address this problem by making such packets more expensive to generate, and by aiding

receivers in dropping them earlier and more efficiently. If every visitor to our metaphorical

ice cream shop had to pay just one cent before they could get in line, the actual customers

would happily oblige while the millions of fakes would have to pay a combined fortune to

continue holding their places.

In the following Chapter (§3) we provide further background information on the DoS

problem more broadly and existing approaches to addressing it, before presenting our own

novel mitigation designs in Chapter §4.

29

Chapter 3

Background

This thesis builds on a rich background of prior research, on Denial-of-Service and several

other topics. Before presenting our mitigations, metrics, and experimental results, we must

first frame the problem in the context of this existing work. We begin with more formal

definitions and taxonomies used to classify DoS attacks (§3.1). Through these classifications

we further define the scope of the problem we aim to address, outlining which categories of

attacks our mitigations target and why. We then discuss current approaches to mitigating

the threats of DoS attacks, including some shortcomings of each (§3.2). After that we dis-

cuss prior efforts to evaluate DoS mitigations, including metric definitions and experimental

methodologies (§3.3). Finally we provide technical background on Proof-of-Work (PoW),

which is used in the SYN-PoW mitigation we present in Section §4.2.3, and a brief history

of its application to the DoS problem (§3.4).

30

3.1 DoS Attack Classification

The term "Denial-of-Service" is a large umbrella that encompasses many drastically different

types of attack. An early formal definition was provided by Gligor in 1984 [20]:

“A group of authorized users of a specified service is said to deny service to

another group of authorized users if the former group makes the specified service

unavailable to the latter group for a period of time which exceeds the intended

service [maximum waiting time].”

This remains a fairly accurate generalization of the problem, despite being written nearly

40 years ago and in the context of operating systems rather than networks. In addition to

outright denial of service in which some resource is made completely unavailable, we are also

concerned with degradation of service, in which some metric defining the quality of service

(QoS) falls below acceptable levels. We hereafter use the abbreviation “DoS” to include both

denial and degradation of service. DoS attacks can involve preventing new connections from

being established as well as disrupting, terminating, or even hijacking ongoing connections.

In 1993, Needham [21] considered network Denial of Service more specifically, dividing

the problem into attacks on the server, the client, and the network itself. These remain the

three primary target types, but in reality a single attack will often have some impact at

multiple locations in the network. Each attack packet will consume some resources at its

destination as well as every hop along the way, and any response packets it elicits will do

the same. There is further complexity within each device as well, as attacks may target a

variety of different resources at multiple layers in the protocol stack.

31

The diversity of DoS attacks makes it challenging to reason systematically about defense.

They cause different types of disruption to different targets using different mechanisms. To

begin teasing apart this problem space further we refer to the taxonomy of DoS attacks and

mitigations presented by Mirkovic and Reiher in 2004 [22], which remains the most thorough

to date. Though the DoS landscape has changed significantly in the nearly 20 years since

its publication, their categorizations remain a useful starting place for building common

language.

At a high-level, they classify attacks according to the eight factors listed below. In the

remainder of this section we give a brief overview of each factor and discuss how it does or

does not pertain to this work. We have re-ordered them from roughly most to least relevant,

and labeled each with the subsection number in which it is discussed:

1. (§3.1.1) Exploited Weakness to Deny Service: (Semantic / Brute-Force)

2. (§3.1.1) Victim Type: (Application / Host / Resource / Network / Infrastructure)

3. (§3.1.1) Attack Rate Dynamics: (Constant / Variable)

4. (§3.1.2) Source Address Validity: (Spoofed / Valid)

5. (§3.1.3) Possibility of Characterization: (Characterizable / Non-Characterizable)

6. (§3.1.3) Impact on the Victim: (Disruptive / Degrading)

7. (§3.1.4) Persistence of Agent Set: (Constant / Variable)

8. (§3.1.4) Degree of Automation: (Manual / Semi-Automatic / Automatic)

32

3.1.1 Volumetric vs. Targeted Attacks

We begin our own classification with what [22] refers to as the Exploited Weakness, divid-

ing attacks into two primary categories: volumetric (brute-force) and targeted (semantic).

In volumetric attacks, attackers send large floods of traffic to exhaust receivers and/or the

intermediary network infrastructure by brute force. The higher the volume of traffic, the

more damaging we expect the attack to be. Targeted attacks exploit more precise vulnerabil-

ities in protocol design or implementation to degrade service, typically with a much smaller

amount of traffic. Some targeted attacks may even require a specific low rate, such as those

that exploit TCP retransmission timeouts [23].

We constrain our scope primarily to volumetric attacks, for two main reasons. First,

they are the predominant threat on the Internet today, as detailed in Chapter §2. Second,

they offer some constant trait by which we can begin to compare them: the attack’s volume.

The space of targeted attacks by contrast is completely boundless and unstructured in a way

that makes systematic analysis extremely difficult. Yet this distinction between targeted and

volumetric attacks is not as clear as it may seem. In some cases the same packets used to

launch a targeted attack can also be used to launch a volumetric attack. To accommodate this

ambiguity we expand our scope slightly: in addition to measuring and mitigating volumetric

attacks, we are also interested in the thresholds at which an attack transitions from exhibiting

targeted to volumetric behavior. If a mitigation is only designed for one of the two attack

variants, that threshold defines a bound on the mitigation’s efficacy.

This brings us to Mirkovic and Reiher’s category of Victim Type. Typically, the scale at

which an attack becomes volumetric is the point at which the primary bottleneck transitions

33

from one of an application/host resource to one of a network/infrastructure resource. TCP

SYN floods offer a prime example of this transitional behavior. At relatively low volumes they

operate by exhausting the limited connection slots of a TCP server, but at sufficiently high

volumes they also congest the network and force clients’ connection requests to be dropped

before they ever reach the server. TCP SYN cookies work well to mitigate lower-rate attacks

by delaying state allocation until the server can confirm the SYN’s source address, preventing

address spoofers from tying up connection table resources, but as we will demonstrate in

Chapter §6 their efficacy declines steadily as the attack rate increases.

Identifying which victim type presents the primary bottleneck can help us identify why

an attack is effective, but most attacks will impact multiple victim types to some extent,

and what we really care about is the combined effects on all parts of a system that an attack

traverses. The real question is what end users actually experience. In terms of the Disruptive

vs. Degrading framing for Impact on the Victim in [22], we assume that the attacker’s

goal is generally to cause as much damage as possible given the resources they have available.

Quantifying this damage is an extremely complex task to which we devote Chapter §5. Our

metrics build on prior work also led by Mirkovic, as discussed further in Section §3.3.

As we are limiting our scope to volumetric attacks, our consideration of Attack Rate

Dynamics is slightly different from that of Mirkovic and Reiher. They divide attackers into

those that send at a constant rate and those that send at a variable rate, either in a way

that gradually increases or randomly fluctuates. In the measurement framework we present

in Chapter §5, the rate of an attack is the key variable that determines its threat. While

we are extremely interested in changes to the attack rate, we want to measure the effects

of those changes in a controlled way. Rather than using variable-rate attackers directly, our

34

model measures many different constant rates of attack through independent trials. This

allows us to more accurately quantify the tipping points at which resource bottlenecks shift,

and at which attacks transition between targeted and volumetric forms.

We’ve found that high-volume attacks generally take effect extremely quickly, shifting

a system from one steady state to another within a matter of a few seconds or less after

they are launched. There is rarely a significant ramp-up period, but often a long ramp-down

after the attack ends, while its side-effects continue to propagate through the network. It

is perhaps for these reasons that burst attacks are commonly observed in the wild – if an

attacker can shut down a site for 10 seconds by sending a 1 second burst, that allows them

to spend the other 9 seconds attacking other targets, or staying quiet to mask their activity.

Though our experiments use constant-rate attacks for the sake of simplicity and consistency,

each one can be thought of as measuring the effect of a single burst.

3.1.2 Address Spoofing

The question of Source Address Validity is a very significant concern as the IPv4 and

IPv6 protocols lack a strong authentication mechanism, making it trivially easy for many

hosts to spoof their source addresses. This enables a single attacker to masquerade as

countless others, requesting excessive resources that it doesn’t want and will never actually

receive. Address-based filtering and rate-limiting approaches become unreliable. Spoofing

also enables reflection attacks, wherein attackers use the source address of their victim to send

widespread requests for content. That content is then delivered to the victim, overwhelming

it with unwanted traffic.

35

Address spoofing can be mitigated effectively by would-be attackers’ ISPs with the use of

source address validation, but despite long-established best practices and the community’s

best efforts deployment of that technology appears to have stagnated. In 2019, Luckie et al.

found that out of 5,178 autonomous systems tested, 31.5% had at least one address prefix

that was spoofable [24]. This state of affairs is essentially unchanged from what Beverly et

al. observed 10 years prior: that 31% of clients tested could successfully send traffic with

arbitrarily spoofed source IP addresses, while 77% of the rest could still spoof within their

own /24 subnet [25]. These gaps in security weaken the entire network – ingress filtering can

only effectively be performed at the edge, so once a spoofed packet leaves its home network

it becomes extraordinarily more difficult to detect.

Publicly available source code for the Mirai botnet reveals that its bots will spoof their

source addresses when possible[26]. Mirai has facilitated several high-profile attacks, and

variants of it are still widely used to this day[6], [13], [27], [28]. Even when an attack is

launched from millions of devices, its impact can still be magnified further by having each

of those devices act as millions more. Data from Microsoft Azure confirms this, as in 2022

they reported that 53% of UDP flooding traffic was spoofed, though how they were able to

make this characterization is unclear.

The mitigations we propose in Chapter §4 operate under the assumption that address

spoofing will remain a pervasive threat for the foreseeable future. They aim to provide an

alternative to source address validation that is capable of allocating resources fairly among

anonymous devices, without the need for authentication and without relying on cooperation

from the attacker’s first-hop service provider.

36

3.1.3 Packet Types

One important factor left under-specified in [22] is the type of packet being used to launch

an attack – what protocol is it a part of; what layer does that protocol operate at; does it

conform to or deviate from the protocol standard; is it establishing a connection, requesting

data, closing a connection, modifying a connection, sending/eliciting error/debug messages,

etc.? It is understandable why they would have excluded such questions from their taxonomy,

as there is simply too much variety to categorize in a way that is both concise and meaningful.

That would effectively amount to a taxonomy of all network protocols, of which there are

hundreds, with over 9000 RFCs specifying their operation and other considerations for their

design and use.[29]

As a result, the attacker’s choice of packet type will have a tremendous influence over

their Impact on the Victim. Different packet types will consume different resources at

different locations, which impact different client applications in different ways. Some attacks

may use packets from the same protocol they are attacking to exhaust protocol-specific

resources, while others drain system-level resources to hinder services that rely on entirely

different protocols. We are interested in all manner of potentially dangerous packet types but

focus our mitigation design and analysis around those that pose the greatest threat today,

as discussed in Chapter §2.

Packet type is also relevant to the Possibility of Characterization, whether or not

the attack packets can be reliably distinguished from legitimate ones. Certain packet types

are significantly easier to characterize than others. Attack traffic that does not conform to

an existing protocol standard is trivial for devices to detect and drop. At the other extreme,

37

many attacks rely on packet types that individually are completely benign and only cause

damage in large volumes, making their characterization impossible. Others fall somewhere

in-between, with receivers able to determine they are malicious only after expending some

significant amount of time or other resources to analyze their contents.

Our primary interest is the mitigation of attacks that are non-characterizable, as they

account for the majority of the threat on the modern Internet. Floods of seemingly normal

traffic are less likely to be detected and dropped at any given hop, and therefore more likely

to consume the maximal amount of resources at their destination and in the intervening

network. The mitigations we present in Chapter §4 operate by adding some additional

information to packets that assists with characterization – adding the information requires

attackers to reduce their flooding rate, and not adding it allows receivers to detect and drop

their packets.

3.1.4 Other

Among the other categories, the Degree of Automation is of little concern – we assume

bad actors will find some way to infiltrate devices and use them to generate attack traffic.

We recognize the importance of efforts to identify those personally responsible, and to inter-

cept communications between them and the devices they command, but our threat model

assumes that some significant amount of malicious traffic is inevitable in the Internet. As

new hardware and software is developed, new vulnerabilities are created that can and will

be exploited to launch attacks. Our concern is how to measure and minimize the damage

those attacks are capable of causing.

38

The lack of ability to characterize traffic or validate source addresses also makes the

Persistence of the Agent Set somewhat irrelevant. If we cannot tell where the attack is

coming from, or even which packets are part of an attack, then it doesn’t matter much if

the set of source devices is changing. Our experiments use a small, constant set of attackers

spoofing a wide range of addresses. From any given receiver’s perspective this is functionally

equivalent to a large set of attackers. What matters most is the volume of traffic arriving,

not how far it has traveled or from where.

3.2 Existing DoS Mitigations

To overview existing DoS mitigation approaches, we again begin with the scaffolding provided

by Mirkovic and Reiher’s taxonomy, summarized as follows:

• Activity Level (Preventive / Reactive)

• Cooperation Degree (Autonomous / Cooperative / Interdependent)

• Deployment Location (Victim Network / Intermediate Network / Source Network)

Within this context we are primarily interested in designing preventive approaches –

modifications to network protocols and Internet architectures that make them fundamentally

more resilient to attack. We also want mitigations to function autonomously. Certain types

of cooperation are beneficial, but we want to avoid those that add significant communication

overhead. Deployment location is a complex question but generally we aim to move the

burden of mitigation away from targeted bottleneck resources, towards the network edge

and ideally onto attackers themselves. This may involve certain functionality scattered

39

throughout the network, making it more difficult for attackers to generate damaging floods,

and aiding servers and routers in determining which traffic to drop.

For our own classification we divide existing mitigation approaches into three main

categories: traffic filtering (§3.2.1), over-provisioning (§3.2.2), and protocol modifications

(§3.2.3). A summary of the three approaches is provided in §3.2.4.

3.2.1 Traffic Filtering

Many mitigation approaches rely on the ability to detect malicious traffic and drop it, ideally

as close to the network edge as possible. Content Distribution Network (CDN) operators like

Cloudflare and Akamai provide such traffic filtering services for a price. The exact methods of

these Mitigation Service Providers (MSPs) are proprietary, but involve some combination of

IP address blacklisting, rate limiting, and attack pattern detection, sometimes using machine

learning.[30]

In Mirkovic & Reiher’s terminology these approaches are reactive, generally taking at

least a few seconds to take effect after an attack is launched (at which point significant dam-

age may already be done. They may be autonomous, implemented solely by the mitigation

service provider, but can and likely often do benefit from cooperation among different MSPs

and ISPs. They are primarily deployed in the intermediate network, though these same

MSPs also typically provide content distribution services which means they assume the role

of source network as well.

As discussed above in Section §3.1, our primary concern is mitigating attacks that are

non-characterizable, against which such traffic filtering strategies are inherently ineffective.

40

When attackers spoof their source addresses those addresses can’t be used as a basis to drop

or rate-limit traffic. When individual packets are standards-compliant, identical in structure

to those sent by legitimate clients, and therefore expected by the server, there is no reliable

way to distinguish good packets from bad. A flooding attack may look identical to a genuine

spike in demand for some service, in terms of both the traffic received and the impact on

user experience. Attackers may even spoof the addresses of legitimate clients, intentionally

or accidentally, making their packets completely identical. As such, traffic filtering strategies

are bound to suffer from some number of false positives, wherein requests from legitimate

clients are mistaken for attack traffic and dropped. In such cases the entity that is supposed

to be mitigating a DoS attack effectively launches one instead.

It should also be noted that filtering is an active mitigation which adds computational

overhead to analyze each packet, and those which measure traffic patterns over extended

periods of time require significant storage in the network as well. Procuring and operating

those services at Internet-scale is expensive, and they are usually1 not provided for free.

These costs are paid by service providers and passed on to consumers, making the Internet

more expensive to use. They also reduce competition by pricing out smaller businesses that

can’t afford paid mitigation services and therefore can’t provide adequate service quality to

their customers.

Additionally, any mitigation strategy that favors one type of packet over another raises

potential ethical concerns. Some filtering strategies employ Deep-Packet Inspection (DPI)

to act on higher-layer packet headers and even data payloads [31]–[33]. While the additional
1Cloudflare’s Project Galileo offers organizations "in the arts, human rights, civil society, journalism, or

democracy" an opportunity to apply for free DoS protection services. Other companies may offer similar
free or reduced-cost mitigation for select services.

41

information may be useful in characterizing malicious traffic, it may also jeopardize user

privacy and network neutrality. DeRose conducted a literature review of this relationship

between DPI and net neutrality in 2010 [34], concluding that "DPI is at odds with a free

Internet" and "it also gives ISPs the means to threaten net neutrality." Any system that

employs machine learning (for DoS mitigation or any other application) must be careful to

avoid bias and unfairness among different users, as show in Mehrabi et al’s 2021 survey on

the subject [35]. While a large amount of research is being conducted on the development

of explainable artificial intelligence systems, many of them remain effectively black boxes,

the operators of which may not even know why any given packet is chosen to be dropped.

Došilović et al. survey the wide extent of this problem as well as potential approaches to

addressing it in [36].

3.2.2 Over-Provisioning

When filtering fails or isn’t possible, the backup plan for MSPs is to simply process the

flood of junk traffic along with the trickle of real requests. Traffic is routed through the

MSP’s private network and load-balanced across numerous replica servers hosting copies

of the targeted content/service. This synergizes with their role as a CDN – even without

concern of attack, performance can be improved by caching replicas of content at multiple

devices, ideally edge devices near the clients most likely to want that content. As mentioned,

a flooding attack is often indistinguishable from a legitimate demand spike, and so strategies

for efficiently delivering popular content are naturally similar to strategies for mitigating

floods.

42

This strategy has proven remarkably effective, allowing providers to maintain service

during floods reaching hundreds of millions of packets and trillions of bits per second.[37]

However, the monetary costs this approach imposes are even worse than those of traffic

filtering. Deploying enough network capacity to handle a flood that has a volume 𝑋 times

the normal demand means buying 𝑋 times as many servers/routers/cables, which then

require 𝑋 times the cost to operate and maintain. Economies of scale may help reduce these

costs somewhat for large MSPs, but generally speaking larger floods will always be more

expensive to mitigate. Again, these costs are borne by service providers and therefore by

their customers. It is an approach based on deliberate waste – in a sense excess resources

are allocated explicitly for the use of attackers. While the strategies we propose in Chapter

§4 also involve some amount of waste, it is carefully minimized and largely confined to the

attacking devices themselves, placing little to no cost on service providers.

3.2.3 Protocol Modifications

Our third category is the broadest, encompassing any mitigations that modify the basic

operation of network protocols. Such approaches have perhaps the greatest potential for

both benefit and harm. Ideally we should strive to design more DoS-resilient protocols from

the ground up, to make it difficult for even the most clever and well-resourced attackers to

cause harm, without needing to rely on expensive or invasive mitigation services. Yet this

is much easier said than done – network protocols are extraordinarily complex, and it is

not clear what makes one more or less resilient than another. A mitigation that blocks one

attack may collapse under another, and the same attack can have drastically different effects

43

when launched against two sets of devices with different hardware, software, or connecting

topologies, even if they deploy the same mitigation.

One common type of protocol modification is the inclusion of a client puzzle. Perhaps the

most notable examples are SYN Cookies and SYN Cache in TCP [38], wherein upon receipt

of a SYN the server encodes vital information as a “state cookie” in a portion of the SYN-

ACK rather than storing it locally. The client echoes the information back in its ACK, from

which the server reconstructs the necessary data. With SYN Cookies the server discards all

connection state after sending its SYN-ACK, and for SYN Cache it stores only a portion of

the usual data. This ensures that connections are not reserved for address-spoofing clients,

which are unable to receive the SYN-ACKs and the state cookies they contain. Cookies

are signed by the server to prevent ACK forgery. This process remains a non-standard yet

widely implemented aspect of TCP. SCTP standardizes the approach by replacing TCP’s

3-way handshake with a 4-way initialization that includes a similar cookie [39].

Generally, we can model such mechanisms as the following 4-step process:

1. Client requests a puzzle

2. Server generates and sends a puzzle

3. Client computes and sends a solution

4. Server validates the solution

In the case of SYN Cookies and SYN Cache, “computing a solution” in step 3 is effortless

– the client receives a state cookie invisibly encoded in the sequence number field and echoes

it back in the acknowledgement number field2, exactly as in normal TCP [40]. This allows
2Some implementations make use of the timestamp option fields to encode additional information.

44

the puzzle implementation to be server-specific since a client doesn’t even need to know it is

participating. Not all implementations are equivalent though – the sequence number field is

clearly not large enough to hold all the information from the SYN, so the server must choose

which data is most essential and discard the rest. This has resulted in implementations

that preclude the use of certain TCP options, as the server discards information that would

indicate whether the client supports those options [41].

In other puzzle systems the client may be presented with a more complex challenge that

is expected to take some amount of time or other resource(s) to solve. At the application

layer, many websites rely on mitigations like Cloudflare’s Browser Integrity Check [42] which

adds multiple seconds of latency to an HTTP request, as well as human-level challenges like

CAPTCHA [43] and its successor reCAPTCHA [44] which reportedly take the average user

32 seconds to complete, totaling an estimated 500 years per day of wasted time [45]. The

benefits of these mitigations are difficult to quantify, but it is hard to imagine they could

justify such extreme overhead.

Even when well-implemented, such puzzle-based mitigations add overhead at every point

in the system they aim to protect. Servers must generate puzzles and validate solutions,

clients must solve puzzles, and the network must carry the puzzles as well as the requests

and solutions. Volumetric floods multiply this load at the server and in the network, turning

the puzzle generation and distribution services into DoS attack targets themselves. A 2004

draft paper from Beal and Shepard provides an excellent analysis of exactly how this issue

manifests and how to design effective puzzle systems for DoS de-amplification around it

[46]. While SYN Cookies, SYN Cache, and other similar client puzzle mechanisms were

not designed to mitigate today’s ultra-high-volume floods, they often remain deployed when

45

such floods happen to arrive. Our TIPs eliminate steps 1 and 2 above by generating puzzles

on-demand at the client, and TIP validation can be offloaded to edge devices to further

reduce the server’s load.

While not directly related, we also note that some prior work in queuing theory and

congestion control also provides useful background. Volumetric attacks are similar to if not

indistinguishable from spikes in demand that cause ordinary congestion, and so designing

protocols to be more fair and performant in the face of legitimate congestion is much the

same as designing them to resist DoS floods. As we discuss in Section §4.2.3 below, one

extension of our SYN-PoW proposal is essentially a form of enforceable congestion control

in which greedy endpoints are rendered physically incapable of generating large quantities

of valid packets. Congestion control is a rich area of research with literature too vast to

enumerate, but we highlight a 1985 paper by Stidham [47] which builds on earlier work by

Naor [48] to theoretically analyze a cost-based model for optimizing admission to network

queues. Though the Internet has changed dramatically since these papers were published,

the fundamental mathematics they use have not. They discuss differences between static

and dynamic control models, as well as the inherent tension between optimizing for indi-

vidual performance versus designing a “socially optimal” system which aims to maximize

performance and fairness across all users.

3.2.4 Summary

To summarize, we classify existing mitigations as either traffic filtering, over-provisioning,

or protocol modifications. Traffic filtering works well for attacks consisting of easily char-

46

acterizable traffic, but the most damaging attacks today often use packet types that are

indistinguishable from legitimate ones. Filtering also fails to protect against any novel zero-

day vulnerabilities (until new filtering rules can be established for them), and requires a

depth of packet analysis that may negatively impact both performance and user privacy.

Over-provisioning is commonly employed by large CDN operators that also provide DoS

mitigation services, using their excess infrastructure to simply handle the flood and process

the traffic, primarily by hosting replicas of vulnerable services on a geographically distributed

set of devices. This approach has proven successful at mitigating many large-scale attacks,

but processing such large volumes of junk traffic is inherently wasteful, and aquiring such

mitigation services is not free. The replication approach is also infeasible for certain types in-

teractive services that require communication with a specific device, and for services handling

private data that cannot legally be copied to third-parties.

3.3 DoS Measurement

In the realm of metrics and methodology for DoS Mitigation, we are building primarily

on a series of papers led by Jelena Mirkovic, which deal with the accurate measurement

of DoS attacks [49]–[51]. The primary takeaway from that research is that different client

applications have drastically different requirements in terms of network metrics like loss,

latency, throughput, and jitter, and that we should instead prioritize client-side metrics

which more directly capture the Quality of Service (QoS) experienced by end users. For

instance, real-time audio conversations require low latency but can tolerate fairly high loss

rates and low throughput, while streaming video requires high throughput but can tolerate

47

considerable latency by buffering at the client. The same applies to resource metrics like CPU

utilization and queue lengths – different applications may have drastically different needs,

and it can be difficult to disentangle the ways in which they depend on various system

resources and properties of the network.

Accurately quantifying QoS for these applications requires us to actually run them and

observe what clients experience. Mirkovic et al. primarily measure QoS in terms of the

rate at which clients can complete some application-layer transactions with a server, and

measure changes in that rate under various attacks. Their DoS attack metrics provide

a solid foundation to build on, but we have found that extending them to the realm of

DoS mitigations is surprisingly non-trivial, for two main reasons. First is that deploying a

mitigation may incur significant overhead, and we need metrics which capture the impact of

that overhead on client QoS outside periods of attack. Second is that a mitigation’s efficacy

and overhead may both be variable, depending not only on the client application but also

on the rate of attack, the network topology, and myriad other factors.

Prior work evaluating the efficacy of specific mitigations is surprisingly scarce. Mitigation

service providers periodically publish whitepapers with statistics about specific attack events

they have observed, but these sources are largely promotional in nature and lack raw data

or robust statistical analysis. A handful of prior studies have performed a more rigorous

analysis of SYN Cookies in particular, but all suffer from significant limitations – in fact, it

is precisely this gap in the literature that originally motivated our work.

First was a brief but relatively thorough analysis from Lemon in 2002, which measured

connection completion rates with both SYN-Cache and SYN-Cookies [40]. The compared

performance during idle periods and times of attack, but tested on a fairly simple four-device

48

network topology with maximum flood rates of only 15,000 packets/second (15 Kpps), and

did not measure a standard TCP implementation as a control. Next came a 2008 study

by Smith and Watrawy comparing different OS implementations – this is an important

contextual variable to measure, but their analysis failed to consider the mitigation’s overhead

outside of attack, used only a single low-volume attack rate (80 kB/s), and tested on an

unrealistic network topology with only two devices [41]. A 2018 paper by Echevarria et al.

measured SYN Cookies’ efficacy in the specific context of network-constrained devices with

similar issues – no consideration of mitigation overhead, a single slow attack rate of 200

packets/second, and a topology of just three devices connected via a single switch [52]. The

most thorough analysis of SYN Cookies we have seen to date is presented by Scholz et al. in

a 2020 pre-print [53]. They compare efficacy for different attack rates, client request rates,

kernel versions, and even different variants on the mitigation. This sort of cross-context

measurement is a large step in the right direction, but relied on a single overly simplistic

network topology with one device acting as both client and attacker. Reusing the same device

for multiple roles in this way makes it impossible to accurately measure resource utilization.

Also relevant is a 2019 paper by Noureddine et al. [54], which proposes and evaluates an

approach similar to SYN Cookies with an advanced mechanism for selecting puzzle difficulty.

That mechanism may prove relevant for a possible extension to our SYN-PoW mitigation,

and their experimental topology is relatively complex, but they too test only meager floods

of at most 5,000 packets per second. In our own prior work using a preliminary version of

our measurement framework we observed a dramatic change in the behavior of SYN Cookies

at the point when flood traffic and response traffic combine to saturate some bottleneck link,

and demonstrated that this tipping point depends on multiple contextual variables [55].

49

Even though SYN Cookies and similar puzzle mechanisms were not designed to mitigate

high-volume floods, it is still important to understand how they behave under such attacks,

and what specific traffic rates trigger changes in their behavior. A device that deploys them

as a precaution against low-volume floods will still have them deployed if/when a high-volume

flood arrives, and they may become counter-productive at maintaining availability during

such attacks. Generating puzzles for bogus SYNs requires CPU overhead at the server,

and (re)transmitting SYN-ACKs in response wastes network resources. Our measurement

framework is specifically designed to capture such costs, and our attacker-side mitigation

approach is designed to minimize them.

3.4 Proof-of-Work

This section provides a brief overview of Proof-of-Work (PoW) systems broadly, as well

as prior efforts to apply them as DoS mitigations. PoW provides a tool for one device (the

prover) to assert to another (a verifier) that it has expended some computational resources,

in a way that can be efficiently verified, albeit with some statistical uncertainty. This has

clear applications for DoS mitigation – generating spurious traffic requires computational

resources, so requiring senders to expend additional CPU cycles with each packet could

force them to send less.

Basic operation for constructing such a proof is as follows, and as depicted in the top

half of Figure 3.1:

1. Construct some message 𝑚

2. Generate a random nonce 𝑛

50

Generate
Message

Add
Nonce

Compute
Hash

Below

AboveCompare
Hash to

Threshold

Increment or
Randomize

Nonce

Send
Message
+ Nonce

Work

Receive
Message

Compute
Hash

Above

Below

Compare
Hash to

Threshold
Accept

Drop

Verifier

Prover

Figure 3.1: Basic operation of a Proof-of-Work (PoW) system. The prover repeatedly
changes some portion of its message (the nonce) and recomputes the message hash, un-
til that hash exceeds a given threshold. The verifier performs a single operation of the same
hash to confirm whether incoming packets meet the threshold.

3. Compute ℎ = 𝐻(𝑚|𝑛) using some well-known one-way hash function 𝐻

4. Compare ℎ to some threshold 𝜃

(a) If ℎ ≥ 𝜃: send 𝑚|𝑛

(b) If ℎ < 𝜃: increment 𝑛 and repeat from step 3

The verifier can then compute ℎ = 𝐻(𝑚|𝑛) using the same hash function3, and decide
3Note that concatenation is not the only option for combining 𝑚 and 𝑛. Depending on the application

it may be possible to merge them in some other way. For example, if 𝑚 is a network packet, it may contain
some existing field that can be used to store the value of 𝑛. What matters is that the prover and verifier
both use the same hash function and construct their inputs to it in the same way, and that the verifier can
interpret the message as the prover intended. Some applications may utilize PoW without any other message
passing, in which case 𝑚 is simply an empty string (such that 𝑚|𝑛 = 𝑛.

51

how to handle the message by comparing ℎ to 𝜃, as shown in the bottom half of Figure 3.1.

Selecting an appropriate 𝜃 value is a complex and application-specific task. We elaborate on

considerations for our own application in Section §4.2.3, but in the simple case we assume

all participants have agreed on some standard value in advance. Note that there is no

benefit to transmitting the hash itself, since the prover and verifier can each compute it

independently. In that paradigm a malicious prover could easily claim a higher hash value

than its message actually had, so verifiers would need to take exactly the same steps to

compute the real hash to compare against the claimed value. The CPU cycles that provers

spend repeatedly generating random nonce values and computing hash functions is what

constitutes the “work.” The “proof” comes from an assumption that 𝐻 truly is a secure

one-way hash function, a mathematical primitive defined by Naor and Yung in 1989 [56]:

“The property required from the hash function ℎ is that for a given value 𝑥 it is

computationally hard to find a 𝑦 such that ℎ(𝑦) = ℎ(𝑥) and 𝑦 ̸= 𝑥.”

In our notation this means that for a given message 𝑚, it is provably difficult to find

a nonce 𝑛 such that 𝐻(𝑚|𝑛) ≥ 𝜃. We assume that it is the goal of all provers, including

malicious ones, to generate valid proofs for multiple different messages. In other words, once

an attacker has found some 𝑚,𝑛 pair such that 𝐻(𝑚|𝑛) ≥ 𝜃 they cannot simply send that

pair over and over. They send it once and then must generate a new message 𝑚′ for which

a new nonce 𝑛′ must be found. This is certainly true for legitimate clients who want to send

and receive new information with each message, but it is also true of nearly all malicious

clients who seek to consume new resources with each message. Some attackers may still be

able to gain an advantage by pre-computing a large number of valid message/nonce pairs and

52

sending them all at once, but as we will discuss in Chapter §4 this approach is sub-optimal

for launching high-volume DoS attacks.

Constructing such a hash function relies on additional assumptions and mathematical

primitives, the complexities of which are well beyond our scope. A wide array of implemen-

tations exist, each of which make trade-offs between security and performance relating to the

primitives they build on. Further technical details and a survey of various function designs

are provided in [57], [58]. When designing our own PoW-based mitigation in Section §4.2.3

we consider implications these details could have on our system, but to a large extent hash

functions are interchangeable, performing the same task in slightly different ways.

We are not the first to recommend such a hash-based proof-of-work system for DoS

mitigation. Indeed, the very first proposal for a PoW mechanism was Dwork & Naor’s

“Pricing via Processing or Combating Junk Mail” [59] which suggested its use for spam email

mitigation in 1992. Senders would generate a PoW to include in each message, and mail

servers would only deliver messages with valid proofs. Clearly that particular application

did not succeed, likely due to reasons discussed in “Proof of Work Proves not to Work.”[60]

Despite the generality of that paper’s title, their analysis is specific to the context of spam

email, and the PoW approach failing in that domain should not be seen as an indication

that it cannot work elsewhere. Spam email is a very different problem from volumetric

DoS attacks at the transport- and network-layers. The most significant difference is the

scale at which they operate – the number of packets per second required to overwhelm a

switch is many orders of magnitude greater than the number of emails per second required

to overwhelm a human recipient. This means the burden on attackers to generate per-

packet proofs far exceeds what would be required for per-email proofs, all else being equal.

53

This enables us to set proof thresholds so low that they negligibly impact legitimate clients

while still significantly impeding attackers, whereas the email application cannot provide

meaningful protection without incurring unacceptable delays.

Today, PoW is most often discussed as a distributed consensus mechanism for blockchain

systems such as Bitcoin [61]. That application has some similarity to DoS mitigation in that

the systems are attempting to limit the rate at which participants are able to generate and

submit valid blocks, in order to prevent the simultaneous submission of multiple conflicting

blocks that would “fork” the chain and break consensus. However, we are not trying to

establish consistency because there is no need to guarantee a global ordering among clients.

There is not even a need to guarantee ordering of packets from a single client since re-ordering

can be performed by TCP where needed. This means that rather than competing with one

another to find the next valid block, each SYN-PoW client competes only with itself to find

a valid packet. Other devices finding other packets while it works are entirely independent

events that do not invalidate whatever work has been done. Clients are guaranteed to find

a valid proof eventually, so while they incur a few CPU cycles of overhead per packet it all

goes towards a useful purpose. PoW-based consensus systems are often criticized for their

energy consumption [62] but in reality that applies much more to some implementations

than others [63], and while we are still proposing a small amount of “wasted” work, the net

result is better overall efficiency.

54

Chapter 4

Designing Trustworthy Independent

Packets

The Internet was designed as an open platform through which remote endpoints can freely

exchange information. Access to early iterations of the system was restricted to a relatively

small set of known participants, and this personal familiarity among users provided some

inherent sense of trust. In The Design Philosophy of the DARPA Internet Protocols [64],

the first of Clark’s seven stated goals is that "Internet communication must continue despite

loss of networks or gateways," but the primary threats to communication were then seen as

hardware failures, poor software implementations, and misconfigurations. As the Internet

grew and evolved, securing it against deliberate attack became a greater concern, with an

increasingly large and anonymous userbase seeking to access an increasingly valuable and

even vital set of services. Yet by this time the architecture had already become too deeply

entrenched for a major redesign to be feasible. The core TCP/IP protocols still remain

largely unchanged since their inception more than 40 years ago, with most security features

55

instead being added on at higher layers.

This approach is intentional, following from the end-to-end arguments [65]. There is an

assumption that security is a luxury not all traffic requires, and that implementing it in the

network core would add unnecessary overhead. In reality this is a drastic oversimplification,

as “security” can refer to many different properties. We assert that one particular security

threat, that of volumetric DoS attacks, is so severe and so ubiquitous that it warrants a

more architectural approach to mitigation. There is an inherent tension in the current

architecture between the fundamental need for public servers to accept traffic from unknown

hosts, and the resources that must be expended to handle that traffic. The ease and impunity

with which attackers are able to launch high-volume floods routinely undermines the entire

Internet’s ability to perform the basic duties of packet delivery and maintain an acceptable

level of service for its users.

We observe that the vast majority of volumetric DoS attacks rely on one of two packet

types: TCP SYNs (the first packet in the 3-way handshake used to establish a TCP connec-

tion), and short- or zero-payload UDP packets. These packet types share several common-

alities which make them compelling to attackers:

• They are simple to generate. More specifically, it is easy to generate a valid SYN or

UDP packet that a very large number of receivers will willingly accept. Each individual

packet looks perfectly innocuous, but attackers can generate large quantities of them

and require no special knowledge about their target(s) to do so.

• They cause harm immediately upon receipt. SYN packets prompt TCP servers to

allocate state for a connection and generate a SYN-ACK in response. UDP packets

56

prompt servers to check for running processes on the specified port – this is not an

particularly complex process, but when receiving thousands or even millions of packets

per second it causes significant delays.

• They are very short, which causes additional harm at every hop towards their desti-

nation. A SYN may be as short as 40 bytes (including the 20-byte IPv4 header) and

with no payload an IPv4 UDP packet is just 28 bytes. Each packet incurs some fixed

overhead to perform a routing table lookup, decrement the TTL field, and update the

IP checksum. By sending many small packets rather than fewer larger ones, attackers

congest forwarding infrastructure in the network and force traffic to be dropped before

it even reaches the targeted destination.

Fortunately we observe an additional similarity which offers a means to address these

vulnerabilities. Though legitimate clients do commonly send packets that look indistin-

guishable from these attack packets, they tend to do so at a significantly lower volume. A

single attacker may send upwards of a hundred thousand packets per second (100 Kpps) –

the threat of botnets comes not only from the large number of devices, but also the fact that

each device acts greedily – particularly those able to spoof their source addresses. Indeed, as

discussed in Section §6.4.1, we are able to generate SYN floods as large as 446 Kpps (164.1

Mbps) from a single device. By contrast, most clients likely average less than one SYN per

second. Typical behavior is for clients to send a single SYN to establish a connection which is

then kept open for some extended period of time to continue exchanging data. Initialization

of new connections happens largely at the human-layer, for example when a user types a

new URL into their browser or clicks on a link. More complex applications may initiate a

57

burst of new TCP connections to pull data from multiple sources, but we should still expect

many orders of magnitude fewer SYNs per second than an attacker would generate.

A similar disparity exists for UDP. While clients may legitimately send large quantities of

UDP packets in general, they rarely have good reason to send packets with extremely short

or non-existent payloads. As its name suggests the entire purpose of the User Datagram

Protocol is for users to exchange data, and that data is carried in packets’ payloads. There

may be special cases in which short packets are used for signaling, based solely on the IP

4-tuple of source and destination addresses plus port numbers, but transiting such packets

through the network is extremely inefficient. Again, we expect such packets to be sent many

orders of magnitude more frequently by attackers than anyone else.

These natural asymmetries between clients and attackers offer an opportunity for a novel

approach to volumetric DoS mitigation we call Trustworthy Independent Packets (TIPs).

The essential concept is to make the generation of certain packet types marginally more

difficult, in a way that significantly rate limits attackers while having a negligible impact on

others. This allows us to bootstrap trust between unfamiliar devices – receivers are able to

verify that senders expended some amount of resources to generate a packet, which implies

that they must not be generating excessive quantities of traffic. Congested receivers can then

prioritize packets that contain adequate TIPs over those that do not. Attackers must choose

to expend resources generating TIPs at a reduced rate of attack, or else send packets without

TIPs which can be easily filtered and dropped. In either case, the attack’s volume is reduced.

Our approach is also designed to permit verification anywhere in the network, not just at the

destination, which allows packets to be dropped closer to their source, minimizing resource

consumption at the receiver and at each hop along the way. Tuning the difficulty of TIP

58

generation allows us to optimize the network’s availability and performance by trading-off

better protection from attack with lower overhead during normal operation.

This is a general concept that may be applied to many different attacks across different

protocols, in slightly different ways. Anywhere there is a disparity between attacker and

client behavior, we can leverage it to make the attacker’s task more challenging. Specifics

of implementation details may vary greatly across protocols however, and a careless im-

plementation could easily be counterproductive. In the remainder of this chapter, we first

present a broad overview of our TIPs approach and considerations we expect will apply to

all implementations (§4.1). We then define two specific implementations of the concept in

detail, both of which are designed to combat TCP SYN flooding attacks but in ways that are

tailored towards different assumptions about attacker capabilities (§4.2). First we discuss

eBPF, the tool used to implement our mitigations and our reasons for selecting it (§4.2.1).

We address the threat of bandwidth-constrained flooders with SYN Padding (§4.2.2), which

simply increases the minimum size of SYN packets, and SYN PoW, which adds small proofs-

of-work to SYNs in order to rate-limit CPU-bound attackers(§4.2.3). We briefly summarize

our mitigation designs in Section §4.3.

4.1 General Design

The core principle of our Trustworthy Independent Packets concept is for certain types of

network packets to carry within them some entirely self-contained proof that the sender is

relatively trustworthy, at least compared to some other senders. This trust is derived from an

assumption that no device can possibly generate such proofs in dangerously large quantities.

59

If a sender includes a proof in their packet it means they must have been devoting significant

resources to its generation, and therefore they must not have been devoting those same

resources to generating a flood of traffic. This can also be thought of as packets “paying” (or

“tipping”) for the services they solicit. Not in the sense that any real or even virtual asset is

changing hands from the packet’s sender to its receiver, but that the sender has spent some

limited resource to generate the packet as a show of good faith to the receiver. This allows

us to redistribute the costs of DoS mitigation, by both making attacks more expensive to

launch and dropping flood traffic closer to its source.

More concretely, a TIP-based mitigation involves two types of participants: provers and

verifiers. Provers add some information to packets that proves they have consumed some

excess resource, and verifiers decide how to handle received packets based on the presence

or value of that proof. In the simplest case the packet’s source host acts as the prover and

the destination host acts as the verifier, but this may not always be the case. Performing

verification closer to the source can allow earlier drops of malicious traffic, minimizing wasted

resources in the network and at targeted servers. There may also be reason to offload the

task of proof generation from clients to Network Address Translation (NAT) boxes or other

proxy devices that are already familiar with and trust the client. For example, if a user owns

legacy devices that cannot be updated they could deploy a prover on a separate proxy device

in their home network, or their ISP could offer to provide a NAT box with a prover built in.

The precise form the proof takes will vary depending on the attack being mitigated and

various properties of the network under attack, but generally it should require the consump-

tion of some resource that is believed to be a limiting factor in the attack’s generation.

Some attackers may opt to send below their maximum possible rate to avoid detection, but

60

many attempt to send as quickly as possible. Those are typically limited by either CPU or

bandwidth – when sending large volumes of nearly identical packets we’ve found it’s signif-

icantly fastest to modify a single buffer instead of loading pre-built packets from memory,

so volumetric attacks are unlikely to be limited by attacker memory or disk storage. Ide-

ally we should design both CPU- and bandwidth-based versions of TIPs for each vulnerable

protocol, combining the two in a single packet design if possible.

For each of these attacker bottlenecks, there exists a general purpose tool we can use

to increase the difficulty of flood generation. In the case of bandwidth-limited attackers,

mitigation is as simple as increasing the minimum packet size. Larger packets serve as proof

that senders have expended more bandwidth. If minimum packet lengths were doubled,

the packet rate of bandwidth-bound attackers could be cut in half overnight. For CPU-

bound attackers we turn to proof-of-work (PoW) systems. Today these are most commonly

discussed in the context of crytpocurrencies and distributed consensus, but they were first

developed for spam e-mail mitigation and function as general purpose tools for rate-limiting

CPU-bound attackers, as discussed in Section §3.4. Requiring clients to encode a small PoW

in each packet precludes attackers from generating large quantities of packets, because they

lack the CPU resources necessary to compute proofs for each one.

This still leaves many questions about implementation details. Where in the packet

should the padding/PoW be located? How much padding should be added, and how much

work should be proved? Are these parameters fixed or variable? If they are variable, how

are they communicated to endpoints? At what point in the packet generation pipeline

should the proof/padding be added, and at what point in the receiving pipeline should it be

verified? Where in the network should verifiers be located? Each of these questions must

61

be addressed separately for each protocol or attack vector we aim to protect against. In the

following section we tackle them in the context of TCP SYN floods.

4.2 Implementations in TCP

This section describes in depth the implementation of our two novel mitigations against TCP

SYN Flooding attacks. We first discuss eBPF, the specific technology we use, including why

we selected it and the common program structure we use for both mitigations (§4.2.1). We

then expound on exactly how SYN Padding (§4.2.2) and SYN PoW (§4.2.3) operate.

4.2.1 eBPF

We have chosen to implement both our SYN Padding and SYN PoW mitigations as Extended

Berkeley Packet Filter (eBPF) programs. eBPF enables us to deploy efficient, portable

extensions to the Linux kernel without changing any kernel code or loading kernel modules

[66]. This is ideal for experimentation as it enables rapid iteration. We can test, modify,

and re-test different versions of a mitigation, with the process of re-compiling and swapping

in a new version taking on the order of a second. It also facilitates incremental deployment

since eBPF-based mitigations are lightweight and portable – compatible devices can install

them without needing to perform a kernel or OS update. On the ingress side these programs

operate before the main packet processing pipeline, allowing us to drop packets before they

are able to consume significant resources. Indeed, eBPF is already in use by volumetric DoS

mitigation service providers, who attest to it successfully dropping millions of packets per

second.test-L4drop On some modern hardware, eBPF programs can be offloaded to the

62

network interface card (NIC) to drop packets even faster and earlier. On the egress side

it allows us to arbitrarily modify packets in-flight with full read/write access to the packet

buffer. This lets us test mitigations that alter core Internet protocols in interesting ways,

again without needing to touch a single line of the kernel code that implements the standard

versions of those protocols. If these mitigations prove as valuable as we hope, we would

expect to see them undergo further refinement and standardization culminating in a more

direct in-kernel implementation, but for proof-of-concept mitigations at the transport and

network layers eBPF is an extremely useful tool.

There are some notable drawbacks however. All eBPF programs must pass a strict

verifier, which is how the code supplied at runtime from user-space is safe to run with kernel

privileges. This places some restrictions on the programs we are able to write. First, they

can only use a subset of the C programming language, excluding many common libraries

that would ordinarily simplify routine tasks. Second, they must perform extremely diligent

bounds checking when parsing packets in order to prevent illegal memory access. This

does not really prohibit any categories of programs (except sloppy ones), but it does make

the development process a more tedious. Third, programs must complete within some fixed

number of instructions per packet. The exact limit is device specific – in older Linux versions

it was set to just 4,096 instructions, but with the release of kernel version 5.2 in April 2019 it

was raised to one million [67]. Determining if a program will halt is a famously undecidable

problem in computer science, so enforcing this restriction requires that any loops must be

unrolled by the compiler, which makes it challenging to do simple tasks like processing

variable length fields (i.e. TCP options). Fortunately we are able to implement both of our

mitigations within these constraints, and we believe the benefits to efficiency, portability,

63

and flexibility of experimentation are well worth the trouble.

Each of our mitigations is implemented as a single eBPF program containing two sections,

one that is attached to a device’s network egress and one to its ingress. The egress section

performs the prover role (adding padding or a PoW to outgoing packets) and the ingress

section performs the verifier role (checking for proofs on incoming packets). Any eBPF-

compatible device may opt to install one or both roles on any or all of its network interfaces.

Wherever possible, the prover should be run directly by clients originating SYN packets,

since it is their sending rate we are trying to limit. However, our mitigations are designed in

such a way that a NAT box or other proxy device that has an existing trust relationship with

a client may opt to add proofs to packets in transit, if for some reason the client is incapable

of doing so itself. This may also be helpful for incremental deployment – many ISPs provide

in-home NAT devices to their customers, which could be used to quickly roll out the prover

side of a mitigation without requiring users to update their own devices. Verifiers can derive

just as much trust from proofs inserted by such a proxy as from those generated by the

original sender. They still attest to the fact that some additional bandwidth was consumed

on the proxy’s egress, and the preexisting trust we assume between the proxy and the original

sender makes bandwidth consumption at the sender irrelevant. If a proxy decides to add

proofs for large numbers of (potentially malicious) clients it places only its own resources at

risk of exhaustion, and ISPs already have human-level strategies in place for identifying and

penalizing their own misbehaving customers.

Additionally, TCP servers are not the only location where we may want to run verifier

programs. Offloading them even a single hop to a firewall device can have massive perfor-

mance benefits, and pushing them towards the network edge (closer to attack sources) is

64

better still. Recall that our goal is to minimize costs to the targeted devices – removing the

burden of verification from the server allows it to allocate all available resources to the task

of serving clients. In-network devices are already making decisions about where and whether

to drop or forward packets based on header data, and are therefore optimally positioned

to serve as verifiers. Many of them are likely already running eBPF programs for other

purposes, as it is a popular general purpose tool for network monitoring and administration

– in those cases much of the overhead our verifier would incur is already being shouldered.

There is also benefit to running a large number of verifiers in multiple locations. Unless

we can predict where attacks will originate, a widely distributed set of verifiers gives us

the highest likelihood of dropping traffic close to its source. The economics are similar to

those of ingress filtering, wherein everyone upstream benefits from dropping traffic as early

as possible, but in our case verification can be performed 2, 3, or even 50 hops away from

the attack source just as easily as it can by the sender’s first-hop service provider. As we

will demonstrate in Chapter §6 the overhead of verification is extremely small, meaning the

benefits of detecting and dropping bad packets early far outweigh the risks of re-verifying

good packets at multiple locations. If overhead does prove burdensome, verifiers could choose

to perform their task on only a random sampling of the traffic they process. With a verifier

at every hop, they could collaborate to ensure most traffic is verified somewhere, despite only

a small portion being verified everywhere.

65

4.2.2 SYN Padding

Our first mitigation, SYN Padding, is an extremely simple concept. Essentially all we are

proposing is to increase the minimum length of TCP SYN packets. This is intended as a

mitigation against SYN flooders that are bandwidth-constrained, by forcing them to send

fewer, larger packets. The primary target of modern high-volume attacks is the network itself

– forwarding overhead is predominantly per-packet rather than per-bit, so large quantities

of small packets are the most effective way to overwhelm routers and force them to delay

or drop legitimate traffic. By most accounts the vast majority of real-world volumetric DoS

attacks rely on either TCP SYN packets, which may be as short as 40 bytes (including the

20 byte IPv4 header) or zero-payload UDP packets, which are just 28 bytes including the

IPv4 header.

While there may be benefits to padding UDP packets to some degree as well, we choose

to focus on SYNs in this initial proof-of-concept for two reasons. First, they are more situa-

tional, being generated relatively rarely by legitimate clients at the beginning of potentially

long-running communication sessions. This quality is easily discernible from standard flags

set in every TCP packet header, enabling efficient filtering. UDP packets are much more

generic by comparison. If one is being used to initiate communication, as in a DNS request

for example, that fact can typically only be learned by reading application-layer data. The

UDP header itself only tells us what type of application is being used, not how it’s being

used. Extracting and acting on this higher-layer information poses more technical and ethical

concerns than special handling for TCP SYNs, as discussed in Section §3.2.1.

As discussed at the beginning of this chapter though, there is little reason for legitimate

66

clients to send extremely short UDP packets. In reality this is not actually a flaw with

TCP or UDP, but rather a vulnerability born of inefficiency in IP itself. Attackers can

exploit the short minimum packet length to exhaust forwarding resources regardless of what

transport-layer protocol is used. The precarious relationship between packet size and network

efficiency has been known since at least as early as 1976, when Metcalfe and Boggs published

the original Ethernet paper and observed significant drops in efficiency with short packets

[68]. The Internet architecture has changed a great deal since then but the same fundamental

problem persists. It is rarely discussed in the context of DoS mitigation, but we assert that

the problem of volumetric DoS attacks is inextricable from those of network efficiency and

fair resource sharing.

The second reason for starting with TCP is that it already includes a convenient standards-

compliant mechanism for padding SYN packets. The minimum length of a TCP SYN packet

is 40 bytes, 20 for the IPv4 header and 20 for the TCP header, but the TCP header can

include up to 40 additional bytes of various options. Table 4.1 lists the three standard option

types that all implementations must support, as defined in the recently released RFC 9293

[69]: End of Option List (EOL), Maximum Segment Size (MSS), and No-Operation (No-Op).

Each TCP packet can only contain one each of the EOL and MSS options, so using those

would limit us to at most 5 bytes of padding. Moreover, EOL will naturally be included in

any packet that uses other option types, and many clients already use the MSS option by

default. That leaves the No-Op option, which turns out to work perfectly for our purposes.

Ordinarily No-Ops are used to align other options at 32-bit boundaries for more efficient

packet processing. They are simply a single byte with a value of 1 that tells the receiver

to do nothing and continue on to the next byte. Being a single byte allows us tremendous

67

Code Option Length
0 End of Option List 1 Byte
1 No-Operation 1 Byte
2 Maximum Segment Size 4 Bytes

Table 4.1: The mandatory options that all TCP implementations must support, and the
length in bytes each one adds to the TCP header. Additional options to support selective
acknowledgement (SACK), timestamps, and window scaling are recommended, but only the
three in this table are required for basic interoperability. Our SYN Padding implementation
relies on an early End of Option List option, but copies of the No-Operation option can also
be used.

granularity in parameterizing this mitigation, as we can add any number of No-Ops to

each SYN from 0 to 40, at most doubling the packet’s length. However, we recommend the

maximum 40-byte padding as even that amount poses negligible overhead to ordinary clients,

while maximizing the potential reduction in attack volume. This padding can be thought of

as verifiable proof that a packet’s sender has expended some amount of bandwidth resources.

1

The following subsections detail how our eBPF prover adds this No-Op padding to out-

going TCP SYNs and how our verifier checks incoming ones. Figure 4.1 depicts both halves

of the mitigation. The source code for our implementation of SYN Padding is provided along

with the rest of our research data [3].
1These repeated No-Ops are a perfectly viable way to implement SYN Padding, but it turns out the EOL

option actually can be used to the same effect. The TCP standard permits an EOL to be placed early, before
the end of the options field, as long as the remainder of the header is all zero bits. This means that instead of
adding No-Ops, we can simply update the data offset field to indicate an increase in the packet length, and
fill the added bits with zeroes (the EOL option itself is also just a zero bit). Since newly allocated memory is
regularly initialized to zero already, this approach should be marginally more efficient than setting the bits
to ones for No-Ops.

68

4.2.2.1 Prover

The prover program runs anytime a packet is leaving the egress side of a link. It first checks

the ethernet frame’s protocol field to verify that it’s an IPv4 packet2, then checks the IPv4

header’s protocol field to verify that it’s a TCP packet. If either check fails, we send the

packet on unmodified. For any TCP packets encountered, we next check that their SYN flag

is set but their ACK, FIN, RST, and PSH flags are not – this distinguishes a “SYN” packet

from other TCP control packets. Again, any other types of TCP packet are sent as-is. For

SYN packets we check the IP header’s total length field and compare it against our threshold

of 80 bytes. Any SYNs that are already 80 bytes are sent unchanged. For shorter SYNs

we compute the difference between the current length and the threshold, and expand the

buffer by that amount. We set each of these newly added bytes to a value of 1, the option

code for No-Ops, then update the Total Length field in the IP header and the Data Offset

field in the TCP header. Finally, we update the TCP and IP checksums to account for the

modifications and send the padded packet.

4.2.2.2 Verifier

The verifier begins in the same way as the padder: it first checks to see if an incoming packet

is IPv4, then TCP, then a SYN. If any of those three checks fails it passes the packet on to

the normal receiving pipeline. For SYNs, the IP header’s total length field is checked and

compared against the threshold of 80 bytes. Sufficiently long SYNs are received normally,
2We intend to develop and test IPv6-compatible implementations in the future, but also note that the

20-byte increase in fixed header size from IPv4 to IPv6 is already half the number of bits we are proposing
to add as padding. This may mean that IPv6 is inherently more resilient to volumetric DoS attacks than
IPv4 – we discuss this further in Chapter §7, but confirming this theory is left for future work.

69

No

Yes
IPv4?

Send

No

Yes
TCP?

No

Yes
SYN?

No

Packet Arrival
at Egress

Prover

Verifier

YesTotal
Length
<80B ?

Expand Buffer by
(80 - Total Length)

Bytes

Set New Bytes
to No-Op Options

Update Total Length
& Data Offset

Update TCP & IP
Checksums

No

Yes
IPv4?

Accept

No

Yes
TCP?

No

Yes
SYN?

No

Packet Arrival
at Ingress

Yes

Total
Length
<80B ?

Drop

Figure 4.1: Basic operation of the prover and verifier roles in our SYN Padding mitigation.
The prover pads all SYNs to a total length of 80Bytes before sending, and the verifier drops
any incoming SYNs below that length.

while shorter SYNs are dropped.

Our expectation is that performing these checks in eBPF will be more efficient than

actually receiving and continuing to forward extremely small SYNs. The closer to an attack’s

source the verifier can be implemented, the greater effect this mitigation will have, as it

prevents every subsequent hop towards the destination from needing to expend forwarding

resources.

70

4.2.3 SYN Proof-of-Work

Our second TIP implementation in TCP, SYN PoW, uses miniature proofs-of-work to combat

high-volume TCP SYN floods launched from CPU-constrained devices. As discussed in

Chapter §3, these are common characteristics of the devices from which DoS attacks are

launched. Though modern DoS attacks tend to be widely distributed, each individual device

in the botnets that launch them will often attempt to spoof its source address and to flood

the network with as much traffic as possible. We note that there is an inherent asymmetry

between SYN flooders and typically TCP clients – the quantities of SYN packets they send

are multiple orders of magnitude apart. By making it just slightly harder to generate each

individual SYN, we can leverage this asymmetry to significantly rate-limit attackers while

having a negligible impact on legitimate clients.

The core concept is for TCP clients to encode a miniature proof-of-work (see Section

§3.4 for a general overview on PoW systems) in each SYN packet, which can be efficiently

verified by the receiver or an intermediary device. During times of congestion or under threat

of attack, verifiers may choose to drop packets carrying lower-value proofs. For regular clients

these proofs take only a small fraction of a second to generate, and are generated rarely. For

attackers that may normally send hundreds of thousands of packets per second, those small

fractions of seconds add up. They are left with two choices: either expend CPU resources

to generate valid proofs for every SYN they generate, which requires extra time and slows

down sending rates; or send packets with random-value proofs, the majority of which will

be dropped by verifiers before they can cause significant harm. Either way the result is less

junk traffic in the network.

71

As with SYN Padding we implement SYN PoW as ingress and egress sections of a single

eBPF program, wherein the egress section performs the role of the prover and the ingress

section acts as the verifier. Figure 4.2 illustrates the basic operation for each of these

roles. As discussed above we expect the prover to be the packet’s original sender, but

our implementation allows it to be offloaded to a NAT or other proxy device if necessary.

Similarly, one or more verifiers may be located anywhere in the network, ideally in multiple

locations.

This mitigation is significantly more complex than SYN Padding, and there are a number

of complicating factors in implementing it. First is that we need somewhere to encode the

nonce, a portion of the message that can be randomized or incremented with each iteration

of the prover’s operation.3 We also need to select a hash function, and determine what

fields from the packet should be included as input to it. We refer to this input as the digest.

Finally, we need to determine an appropriate proof threshold, in order to set the expected

amount of work that must be done to generate each SYN. The following subsections address

each of these complexities.

4.2.3.1 Nonce Location

The nonce is a portion of the digest that is randomized or incremented with each iteration

of the proof-of-work protocol. Changing its value changes the output of the hash function

in an unpredictable way. Repeatedly changing the nonce and recomputing the hash is the

computational “work” our clients prove. Their objective is to find a nonce that, when included

in the digest for the packet they want to send, produces a hash output above a certain
3Note that if designing a scheme from scratch we could allocate a dedicated field to this purpose.

72

No

Yes
IPv4?

Send

No

Yes
TCP?

No

Yes
SYN? Extract

Message Digest
Packet Arrival

at Egress

Message Digest

- Source IP
- Destination IP
- Source Port
- Destination Port
- Sequence Number
- Acknowledgement Number
- (Timestamp)

Compute
Hash

No

h > θ ?

Increment or
Randomize Nonce
(Seq. # or Ack. #)

No

Yes
IPv4?

Accept

No

Yes
TCP?

No

Yes
SYN? Extract

Message Digest
Packet Arrival

at Ingress

Message Digest

- Source IP
- Destination IP
- Source Port
- Destination Port
- Sequence Number
- Acknowledgement Number
- (Timestamp)

Compute
Hash

Yes

No

h > θ ?

Drop

Prover

Verifier

Update TCP & IP
Checksums

Figure 4.2: Basic operation of the prover and verifier roles for our SYN PoW mitigation,
including essential contents of the message digest. Before sending a SYN, the prover repeat-
edly alters part of the message digest (the nonce) and recomputes the digest’s hash value
(ℎ) until it exceeds some threshold (𝜃). The verifier then checks the hash values of incoming
SYNs against its own threshold to decide whether they should be dropped or accepted. All
other packet types are sent/accepted normally by both roles.

73

threshold, 𝜃. Therefore the nonce needs to be some bits in the SYN packet that can be

set to an arbitrary value by the sender. We must also consider the nonce’s length, as it

determines the granularity with which we can tune the mitigation. With a 𝑏-bit nonce

each SYN can be made to have as many as 2𝑏 different hash outputs (all other fields being

unchanged), which gives us 2𝑏 possible values for 𝜃.

There are a few potential locations where a nonce could be added to SYN packets,

with some natural trade-offs between them. One approach would be to define a new TCP

option type specifically for this purpose, but our goal is to design an implementation that

is as transparent and backwards-compatible as possible. Additionally, the unordered and

variable-length nature of TCP options makes them extremely difficult to parse under the

constraints of the eBPF verifier. Instead we want some way to encode the nonce in an

existing field of the TCP header. Proof-bearing packets should look and act like regular

SYNs. We have identified two potential header fields capable of meeting our needs: the

Sequence Number and the Acknowledgement Number.

The Sequence Number field presents perhaps the most natural location for the nonce,

but can only be used when the prover is also the direct originator of the SYN. Recall that

the nonce is simply some value that can be randomized or incremented with each iteration

of the proof-of-work protocol. It has long been recommended to randomize the initial se-

quence number (ISN) used in SYN packets to prevent connection hijacking attacks. A secure

algorithm for doing so, defined in RFC 6528 [70], was recently included in the main TCP

specification via its update in RFC 9293 [69]. Our SYN PoW prover would first use this

standard mechanism to generate an ISN, then increment it with each hash iteration. This

change makes no difference to the receiver or in-network devices, as they have no expecta-

74

tion for what the ISN should be, and we see no reason it would diminish the security of the

random generation mechanism.

The one device that does care if this number changes is the one that generates it, which

is why proxy-based provers cannot use this implementation. If a proxy were to change the

ISN in flight, the original sender would not recognize the SYN-ACK it received in response,

preventing connection establishment. The same problem prevents us from using eBPF to

implement a prover locally on the SYN’s originator, because our egress eBPF program acts

on packets after the ISN has been set in the kernel. It may be possible to circumvent

this by having our prover update the socket metadata that tracks the ISN, but this would

add unnecessary complexity and overhead. We could also implement a two-way proxy that

translated sequence/acknowledgment numbers back and forth between their pre- and post-

proof values, but that too would add considerable complexity and require ongoing packet

modification and data storage throughout each TCP connection – our goal is to modify and

verify only the initial SYN packets.

Instead, our eBPF prover encodes its nonce in the Acknowledgement Number field, which

is currently unused in SYN packets. It is typically initialized to zero but neither the original

nor recently revised TCP standards specify any initial value for it [69], [71]. We have found

that both local eBPF provers and proxy provers are able to modify this field arbitrarily

without any impact on a client’s ability to establish a connection. The Acknowledgement

Number field therefore provides an ideal location to encode a nonce: 32 bits of free, unused

header space, which is extraordinarily rare to come by in a protocol as lean as TCP.

We do note that SYNs with non-zero Acknowledgement Numbers (NZAN) elicit a warning

(though not an error) from Wireshark when viewing packet captures. There is also a chance

75

that some middleboxes might zero-out the field in-flight despite non-zero values being fully

standards-compliant, but we have yet to see any evidence of this. Neither our testbed

hardware nor our client-server applications had any issues forwarding or processing NZAN

SYNs. However, to ensure maximal compatibility we would recommend eventual in-kernel

implementations use the Sequence Number field, while proxies and eBPF implementations

use the Acknowledgment Number.

It is possible for both versions to coexist side-by-side, simply by including both fields in

the digest. That way verifiers perform exactly the same operation regardless of where the

prover was located or which of the two fields it used. This allows us to use eBPF and proxy

implementations for initial tests and deployments, before gradually transitioning towards

more in-kernel implementations as the mitigation is refined and standardized.

4.2.3.2 Digest Composition

Next we consider what information from the SYN should be included in the packet’s digest,

what is input to the hash function for the proof-of-work protocol. Again, we include both

the Sequence Number and Acknowledgement Number fields as potential nonce locations.

Local provers may use either one, while proxy provers and eBPF implementations must use

the Acknowledgement Number. We must also include some information that the attackers

will change with each packet, to ensure they cannot simply find a single high-value nonce

and reuse it with every packet. For address-spoofing attackers, this can be guaranteed

by including the source IP address. To account for non-spoofing attackers we include the

entire 4-tuple of source address, source port, destination address, and destination port. If

an attacker were to keep these four fields unchanged with every packet they would quickly

76

succeed in creating a half-open connection at the server, after which point their subsequent

SYNs would be ignored as duplicates. Completely identical packets would still consume

forwarding resources in the network, but there are various techniques for efficient “packet

deduplication” to protect against such floods [72]–[75]. We emphasize that our mitigations

are designed primarily to supplement such strategies, not necessarily to replace them.

In theory attackers could pre-generate large quantities of SYNs with different addresses

and ports that all have valid proofs and send them from memory, but in practice we expect

that would result in significantly slower floods from most devices. This will depend on

resource bottlenecks of individual attackers, but in our own attempts at generating such

high volume spoofing attacks we’ve found the fastest method is to allocate a single buffer,

fill it with the data for the first packet, and overwrite specific bits in place as necessary for

subsequent packets. Any operations that copy data to new buffers or read whole packets in

from memory will slow this process down significantly, well beyond the cost of recomputing

TCP and IP checksums for each packet and beyond the cost of our miniature proofs-of-work

as well.

Attackers also have the option to not attempt the proofs and continue sending “dumb”

floods. In this case their nonce will be whatever default value is selected in normal packet

generation – the normal ISN for the Sequence Number field, and zero for the Acknowledge-

ment Number field. Verifiers can still compute hashes for these dumb packets in exactly

the same way they do for “smart” ones. Attackers will occasionally get lucky and stumble

upon a packet that has a high hash value with these default fields, but the vast majority of

dumb packets will be dropped as soon as they reach a verifier. Still, verifying and dropping

these packets does require some resources, which means dumb floods may still be viable. We

77

evaluate the impact of both dumb and smart floods under SYN PoW in §6.4.

If further protection against replay attacks is desired, a timestamp can also be included in

the digest. Verifiers would drop any packets with out-of-date timestamps before even needing

to compute their hash, forcing attackers to include a recent timestamp in each packet they

send, which in turn would force them to compute unique proofs. We could incorporate the

standard TCP timestamp option, but it is not supported by all devices and as mentioned

above TCP options are difficult to parse in eBPF. Another possibility is to sacrifice some

bits from the nonce to encode our own coarse-grained timestamp there. For example, we

could use the first 16 bits of the Sequence/Acknowledgement Number field to store the

nonce and the second 16 to store a local timestamp. With a granularity of one second-

per-bit this would provide just over 18 hours worth of unique timestamps, which is clearly

insufficient. This approach would also require verifiers to know which of the two fields the

prover used, and for provers to modify such a large portion of the Sequence Number field in

such a predictable way would likely compromise the security of the ISN generation function

defined in RFC 6528 [70]. Additionally, any mechanism that uses timestamps must rely on

clock synchronization among devices, which is absent in many real-world deployments. The

Network Time Protocol (NTP) on which clock synchronization relies [76] also adds more

communication to the network when our goal is to reduce congestion.

Future refinement of this idea may prove that some form of timestamp is in fact neces-

sary, but for our initial experiments we assume replay attacks are not a viable threat for

high-volume spoofers under this model. Our digest contents are therefore the two potential

nonce fields (Sequence Number and Acknowledgement Number) and the full source/desti-

nation address/port 4-tuple. These digest contents are listed in Table 4.2, along with their

78

corresponding data lengths.

Field Length
IPv4 Source Address 4 Bytes
IPv4 Destination Address 4 Bytes
TCP Source Port 2 Bytes
TCP Destination Port 2 Bytes
TCP Sequence Number 4 Bytes
TCP Acknowledgement Number 4 Bytes

Table 4.2: Contents of the SYN PoW digest that is input to the hash function. Source and
destination ports are included to protect against spoofing attacks, while the sequence and
acknowledgement number fields are used to encode the nonce.

4.2.3.3 Hash Function Selection

Generally, a hash function is some mathematical operation that takes either a fixed or

arbitrary-length input and produces a fixed length output, in such a way that guarantees

two key properties:

1. They are deterministic: for any given input the function always returns the same

output.

2. They are one-way: it is provably difficult to predict the output any given input will

produce, or to find an input that will produce any given output.

The first property ensures that all participants agree on a packet’s hash value, the result

of hashing its digest. As long as you know what hash function to use, each packet’s value

is self-evident. The second property prevents attackers from gaining an unfair advantage.

The exact definition of “provably difficult” depends on the specific mathematical formulation

used, but the general concept is that there should be no method of finding an input that

yields a given output that is more efficient than random guessing. This means the best way

79

for provers to find a nonce that yields a sufficient hash value is by trial-and-error, brute-

forcing the hash function with random nonces, thereby performing the work their packet

hash serves to prove.

For our purposes there is an additional constraint: we need a hash function that is simple

enough to be implemented in the subset of the C language that is available to eBPF programs,

and it must be able to pass the eBPF verifier. Many standard libraries are unavailable which

precludes the use of most common cipher suites, and restrictions on the instruction count,

loop bounds, and memory access prevent us from re-implementing those tools. A potential

future in-kernel implementation would not be subject to these limitations, and could make

use of a common hash standard such as SHA-256 or MD5. As long as all participants agree

on the same function, it makes little difference to our implementation what that function

actually is – future revisions may swap in something simpler, more efficient, or more secure

than what we have chosen.

We still prefer to use an off-the-shelf implementation for this component of the system

rather than trying to develop a new custom hash function. That is a notoriously difficult task

to get right, and better left to those with more expertise in the field of cryptography. Based

on the criteria above, we have chosen to use the “SuperFastHash” developed by Paul Hsieh

[77] for our initial implementation. Hsieh’s algorithm is less than 50 lines of C code, and

only requires inclusion of the stdint.h header. We are able to run this code, unmodified,

in eBPF without issue. Another benefit is that, as the name suggests, each iteration of the

SuperFastHash can be computed quite quickly. While it may seem counter-inutitive, this is

actually a desirable property for our application because it gives us more control in tuning the

system. Our strategy is to make attackers complete a large number of simple proofs rather

80

than a single challenging one. Making it easy to generate a single proof allows us to minimize

overhead at legitimate clients, while attackers are still stymied by the sheer quantity of proofs

they must generate. Regardless of the hash function chosen, we are limited to a relatively low

maximum per-packet delay because we cannot exceed the one million instructions-per-packet

limit set by eBPF. For reasons discussed in the following section we do not expect this limit

will pose an issue. Hsieh also notes that his SuperFastHash has reportedly been used in such

notable software as the Apple Safari and Google Chrome browsers, which indicates that it

has likely undergone extensive vetting for security properties, beyond the already extensive

analysis provided by Hsieh himself.

4.2.3.4 Setting Proof Thresholds

Once a hash function is selected, the next question is how to set the proof-of-work threhold

𝜃. Our goal is find a value that requires provers to perform an average of 𝑘 hash iterations

per packet in order to find a nonce that yields a hash value ℎ ≥ 𝜃. The relationship between

𝑘, 𝜃, and the hash output length 𝑏 is defined by Equation 4.1.

𝜃 = 2𝑏 * 𝑘 − 1

𝑘
(4.1)

A hash function with a 𝑏-bit output allows for 2𝑏 possible values of ℎ. If we want clients

to take 𝑘 attempts on average to generate a valid SYN, then only 1
𝑘

randomly generated

SYNs should be valid, and therefore any SYN with ℎ < 2𝑏 * 𝑘−1
𝑘

should be dropped.

The next question then is how much work we actually want clients to prove. We know

how to set 𝜃 to target a desired value of 𝑘, but how do we know which value of 𝑘 is optimal?

81

Very small values of 𝑘 will have little effect on attackers, while very large values will have

unacceptable overhead for regular clients. We want to learn where the sweet spot is in

between those two extremes, and how that may depend on the nature of the attack, the type

of client application, the topology of the network, etc..

If we assume that every device in the system takes 𝑡 seconds to perform a single iteration

of our hash function, then an iteration target of 𝑘 adds a delay of 𝑡 * 𝑘 seconds to the

sending of each packet, plus an additional 𝑡 seconds for the single hash iteration performed

at the verifier. That same target also limits attackers to at most 1
𝑡*𝑘 packets per second.

Since attackers don’t wait for SYN-ACK responses, the additional verification delay does not

reduce their sending rate further. For a concrete example, let’s say 𝑡 = 1𝑚𝑠 and 𝑘 = 10. That

would add 11ms of latency to the initialization of each TCP connection for legitimate clients,

but in return attackers would be rate-limited to at most 100 valid SYN packets/second. These

are encouraging numbers – 11ms is not an unreasonable amount of time to make clients

wait for such a rarely sent and potentially damaging packet, and 100 packets per second

is many orders of magnitude less that what attackers are typically capable of generating.

There appears to be ample room to tune this system to prioritize either stronger rate-

limiting or lower overhead: depending on context we might prefer a 1.1ms delay with a 1000

packet/second rate-limit, or a 110ms delay with a 10 packet/second limit.

In reality though 𝑡 is not constant across devices, which means the optimal value of 𝑘 can

only truly be determined through experimentation in-context. Generally we expect these

differences in hashing efficiency to favor defenders over attackers. As discussed in Chapter

§2, a large portion of attackers are resource-constrained IoT devices. We expect them to

have under-powered CPUs, and to therefore exhibit higher than average values of 𝑡, allowing

82

us to rate limit them even more severely. Conversely, we expect verifiers would primarily be

deployed on the sort of high-powered enterprise network devices that are already typical in

volumetric DoS mitigation. These may be able to achieve below-average hash rates, slightly

decreasing the latency experienced by legitimate clients. Clients themselves run on diverse

hardware – averaging across all clients we would (almost by definition) expect to see average

values of 𝑡.

4.2.3.5 Communicating Proof Thresholds

Finally, there is the issue of communicating the proof threshold value 𝜃. To maximize effi-

ciency, provers should know what hash values will be accepted. That allows legitimate clients

to only send packets that they know carry a sufficient proof, and to therefore avoid wasted

work and unnecessary retransmissions. This is challenging to achieve without violating the

core principle of TIPs though, that we need to build trust in the very first communication

between two devices. If the SYN is the first packet exchanged between a client and server,

then the client must somehow know how much work the server and/or other verifiers on the

path to the server are expecting it to prove. There are many possible ways this might be

achieved, but we have identified three plausible solutions: setting a standard global thresh-

old, communicating thresholds indirectly through DNS, and inferring thresholds based on

packet loss.

4.2.3.5.1 Global Standard The simplest solution would be to establish a common

global threshold across the entire Internet. All provers would be pre-configured to per-

form the same amount of work, and all verifiers would reject SYNs with hashes below the

83

same value. There are very good reasons to value the simplicity of this approach, particu-

larly the complete lack of communication it requires. While this may indeed prove to be the

best overall solution, it cannot possibly provide optimal mitigation efficacy in every context.

As mentioned above, the ideal proof threshold depends on parameters of the system being

measured, including but not limited to the amount of time it takes each device to complete

a single hash iteration and how many packets each device ordinarily attempts to send per

second. While there may be some 𝜃 value that yields reasonably high efficacy and low over-

head across a variety of realistic scenarios, we first consider methods by which thresholds

could be communicated indirectly.

4.2.3.5.2 DNS One compelling option is for servers to announce their 𝜃 values via the

Domain Name System (DNS). The average Internet user does not actually know the IP

addresses of servers with which they want to establish a connection (most probably don’t

even know what an IP address is). Instead their device first queries a DNS server using a

more memorable, human-readable domain name, and that server responds with one or more

corresponding addresses. This too is becoming an increasingly outdated form of interaction

with the Internet. Users rarely type or even look at domain names, instead typing search

terms directly into their web browser and following links served by a default search engine,

or else using mobile/desktop applications that abstract and obscure device identities and

interactions even further. DNS is still used heavily in these cases though, as the IP addresses

associated with the search engine, link destinations, and back-end application servers are all

subject to change over time.

There is a strong precedent for such use of the DNS to deploy security extensions on

84

the Internet. The most notable example is DomainKeys Identified Mail (DKIM), which uses

the DNS to store public keys for the purpose of signing and encrypting e-mail [78]. Adding

large amounts of extraneous data to DNS entries has the negative side effect of increasing

the amplification factor that can be attained in DNS reflection-based DoS attacks; attackers

send short queries spoofing the source address of a targeted host, prompting DNS servers

to flood that target with large unwanted response packets. DKIM requires signers to use

1024-bit or longer RSA keys, while the threshold information our SYN-PoW implementation

would add requires only 32 bits.

The results of DNS queries are often cached for future use so clients may not send one

before every SYN, but most will at least perform a DNS lookup before the very first SYN

sent to a new server. Cache entries are set to expire to avoid stale information though, in

some cases after as little as 30 seconds or as long as a month, but typically within 24 hours –

after which point if the client wants to reconnect to a “known” server it will first send a new

DNS query before sending a new SYN. This means that if servers communicate their proof-

of-work thresholds through the DNS, we can expect clients to receive up-to-date information

within roughly one day. Such infrequent updates could accommodate hardware upgrades or

other major changes to the network, but are clearly insufficient for real-time mitigation. In

2022 Microsoft Azure reported [9] that 89% of all observed DoS attacks lasted less than an

hour, and 26% lasted only 1-2 minutes.

Slow propagation of threshold information is not the only hurdle to implementing a DNS-

based mechanism. It involves some prior communication before the SYN is sent, which we

explicitly aim to avoid. That communication is not directly between the prover and verifier,

nor between the client and server, so it does not directly worsen the situation we are trying

85

to improve. This would however create a new incentive to attack DNS servers, in much the

same way that traditional client puzzles often see their puzzle generation and distribution

mechanisms become attack targets.

Relying on DNS would also significantly complicate the distributed nature of our miti-

gation. We want verifiers to be located in the network instead of just at the server, which

means the DNS server would need to return the maximum threshold across all verifiers on

the path from the source to the destination. It’s not clear how that information could be

collected, and if it could there would be significant overhead involved with both gathering

and storing it. Provers dislocated from clients would need to perform their own DNS lookup

for each SYN before adding a proof and forwarding it along. Unless a proxy prover already

has this DNS information cached locally this lookup will add significant latency, and even a

local cache cannot easily be accessed from within the confines of an eBPF program.

4.2.3.5.3 Inference It may also be possible for provers to infer proof thresholds on their

path over time, through an extension of this concept we call Enforceable Congestion

Control (ECC). If a client sends a SYN and does not receive a SYN-ACK, they can infer

that the packet was dropped due to congestion at the server or in the network. Just as

traditional TCP congestion control interprets dropped data packets as a signal to halve the

window size [79], ECC takes dropped SYNs as a signal to double the prover’s 𝑘 value which

has a similar effect of halving the rate of traffic generation. On receipt of an ACK, ECC

decrements 𝑘 which linearly increases the sending rate.4 As with TCP congestion control,
4In practice, devices will be adjusting their 𝜃 values, as 𝑘 is an expected average based on 𝜃. However,

it is the expected number of hash iterations that we aim to double and decrement with ECC, so we find it
more intuitive to discuss changes in terms of 𝑘.

86

there are likely more efficient algorithms than this simple Additive Increase Multiplicative

Decrease (AIMD) approach, and our provers would be similarly free to select whichever they

prefer.

Verifiers would then be free to adjust their thresholds in response to changes in demand,

without actually needing to announce the new value. This requires proxy provers to be on

both the outgoing and return paths in order to keep track of SYN/SYN-ACK pairings. We

assume such proxies will be located close to the clients they add proofs for, often on NAT

boxes one or two hops away, or even virtual devices running on the same hardware as the

client. In these cases the prover will naturally see every SYN and SYN-ACK between the

client and server, allowing it to adjust its 𝑘 value accordingly.

This approach could also make things more difficult for address-spoofing attackers, be-

cause they have no mechanism for detecting when their packets are dropped. Flooders

don’t expect responses to anything they send. This means they would have no signal from

which to infer the threshold. Attackers that are naturally incentivized not to attempt the

proofs would be unaffected, but “smart” attackers would struggle to find the level of proof

effort capable of maximizing their potential for harm. Overestimating the threshold means

rate-limiting themselves unnecessarily, and underestimating it means their packets will be

dropped. We would expect to see legitimate provers’ 𝑘 values oscillate around the actual

threshold similarly to how the iconic TCP sawtooth fluctuates around the ideal window size.

The major impediment to using ECC for threshold inference with our current SYN PoW

implementationis that it adds significant complexity. Our current eBPF programs are en-

tirely stateless, performing exactly the same actions on each packet regardless of the traffic

that preceded it. For provers to learn thresholds over time they would need to maintain

87

and reference some table listing expected thresholds for each destination address. With in-

network verifiers it is reasonable to expect this table could be condensed to store only one

threshold per /24 or even larger subnets, since the paths from a single source to every host

in a given subnet are likely to transit many of the same hosts and in our case the same

set of verifiers. For verifiers to adapt their thresholds based on current demand also adds

some complexity, but checking the current status of system resources is largely what eBPF

is designed to do.

4.3 Summary

To summarize, we are proposing a protocol agnostic approach to volumetric DoS mitigation

based on increasing the difficulty of generating certain packet types that are sent dispropor-

tionately more often by attackers than others. Our Trustworthy Independent Packets

(TIPs) can easily be generated by legitimate senders and verified by receivers. Attackers are

left with a choice between expending additional resources to craft valid packets and slowing

down their floods in the process, or sending mostly invalid packets that will be dropped

before they reach their destinations. We observe that high-volume flooders are likely to be

rate-limited by either their CPU or their bandwidth, which means we should develop miti-

gations in which the increased difficulty of packet generation involves consumption of those

resources.

To that end, we presented two novel mitigations against the ubiquitous threat of TCP

SYN floods. SYN Padding simply increases the minimum packet length, which forces

bandwidth-constrained attackers to send fewer, longer packets per second, reducing per-

88

packet forwarding overhead in the network. With SYN PoW, clients generate small proofs-

of-work for each SYN to demonstrate that they have expended some CPU resources. In

Chapter §6, we will evaluate both the efficacy and overhead of these proposed mitigations

through controlled testbed experimentation, after discussing how to accurately evaluate them

in Chapter §5.

89

Chapter 5

Metrics and Measurement Techniques

To facilitate accurate evaluation of the mitigation strategies presented in Chapter 4, we

first establish a general framework for measuring the costs and benefits of DoS mitigations.

Our framework builds on prior work evaluating the impact of DoS attacks, but extending

impact metrics to the realm of mitigation is surprisingly non-trivial. We must consider a

mitigation’s efficacy at reducing the damage caused by an attack as well as its overhead

outside periods of attack, both of which may be heavily influenced by: the type and volume

of attack traffic; the type and volume of legitimate client traffic; the hardware and software

used by clients, servers, and in-network devices; the latency, bandwidth, and loss rate of

network links; the overall layout of the network topology and relative positioning of devices;

and myriad other factors. Clients that normally communicate infrequently are less likely

to notice a disruption; servers with fewer resources to start with are bound to reach their

breaking point more quickly once those resources start being consumed; and clients directly

adjacent to a server tend to experience less impact from attacks than those who are several

hops away. Even the act of measurement itself will alter the results, so we must carefully

90

consider what sort of measurements to take, where, and with what granularity.

We cannot hope to state whether any mitigation is objectively good or bad – rather, our

goal is to determine which mitigation is best-suited for a given scenario, and in what sort of

scenarios a given mitigation is likely to have the greatest effect. Our immediate motivation

is to evaluate our TIPs in comparison with existing mitigations, and to compare different

versions of our mitigations against one another in order to find optimal parameters. The

framework this chapter presents has much broader utility however, as our definition of a

mitigation is deliberately vague. These methods can be applied to evaluate essentially any

modification to a network system. We envision this same framework being used to compare

designs and implementations of disparate network protocols and internet architectures, to

determine which is more resilient to various attack and under what circumstances. This may

prove useful in motivating transitions to new technologies, and in optimizing the implemen-

tations of old ones.

We first present the core structure of our experiments in Section §5.1, including the min-

imal set of devices and their roles. We then discuss specifics of the network topologies on

which our experiments are conducted and the DeterLab testbed environment in which those

topologies are realized in Section §5.2. Section §5.3 discusses the selection of underlying per-

formance metrics for evaluating the impact of DoS attacks. We then extend those metrics in

Section §5.4 to define metrics for evaluating a DoS mitigation within a single specific context,

and extend those further in Section §5.5 to analyze changes in results across multiple contex-

tual variables. These metrics have been carefully crafted to address common shortcomings

in the literature on DoS attack and mitigation measurement, as discussed in Section §3.3.

They are agnostic to the selection of an underlying performance metric, control for both the

91

separate and combined effects of an attack and a mitigation, and facilitate analysis across

multiple other variables simultaneously.

5.1 Experiment Model

The minimal version of our experiment model involves three devices: a server provides

some service or resource, a client attempts to access that service/resource, and an attacker

attempts to disrupt that access. Our goal is to measure a mitigation’s efficacy at reducing

the attack’s disruption, as well as the overhead it incurs at the client, server, or other

entities outside periods of attack.

For certain experiments we may want to include multiple instances of each of these

device types, perhaps adding additional attackers to increase the attack volume, or including

multiple clients to assess fairness among them. We may also include additional device types

providing other functionality – switches, routers, firewalls, etc.. While certain mitigations

may be implemented on clients, servers, and/or attackers directly, others may be deployed

on a separate device in the intervening network. More complex topologies may allow us to

model real-world networks more closely, but they can also make it difficult to disentangle

complex interactions between devices.

Figure 5.1 shows a simple example of the sort of network topologies on which we conduct

our experiments. In addition to the server, clients, and attackers, it also includes a device

we refer to as the sink. This represents the outside world – any packets in our network

with destination IP addresses in the public Internet will be routed to the sink, where they

are dropped immediately upon arrival. This allows us to safely observe the impact of the

92

backscatter traffic that is sent in response to the spoofed-source attacks. Our attackers

generate traffic with randomly selected source IP addresses (excluding private and reserved

ranges), so any responses will be addressed to the rightful owners of those addresses. We

cannot risk flooding any external devices with our attack backscatter, but that traffic may

have a significant impact on devices inside our experiment as it shares network links and

other resources with legitimate client traffic in just the same way the original attack packets

do. In short, routing outbound packets to the sink before dropping them enables us to

maintain realism without compromising safety.

Figure 5.1: A simplified example of the sort of network topologies used in our experiments.
Actual experiments use larger networks to improve realism, but this represents a minimal
set of components.

Our essential topology also includes some set of routers and links to connect devices. In

simple experiments these simply perform standard packet forward services one would expect,

but they have additional potential for mitigation experiments. Some mitigations may be

deployed on routers in the network rather than at the sender or receiver. As discussed

further in Chapter §4, performing mitigation throughout the network (and particularly at

93

the network edge, close to attackers) can allow us to drop malicious traffic earlier, minimizing

the resources it consumes. Certain links in our topology are emulated, allowing us to easily

adjust their bandwidth, latency, and loss between experiments. As shown in Figure 5.1 we

use these emulated links to create artificial bottlenecks, which allow us to measure attacks

and mitigations in diverse contexts. For instance, we may find that some mitigations are only

effective when the bottleneck bandwidth exceeds the attack volume, or that their overhead

scales with the bottleneck’s latency in a way that makes them impractical for distant clients.

5.2 Testbed Environment

We now provide further detail on the selection of a testbed environment in which to construct

our experiment topologies. The only accurate way to measure a volumetric DoS mitigation

is by first generating a volumetric DoS attack, which presents obvious ethical concerns. We

need an isolated environment in which the attacks we generate can only harm devices we

control, without risk of leaking onto the public Internet. There are three main categories

to choose from: simulation, emulation, or a physical testbed. Ideally we would like to

experiment on a topology that is as similar as possible to some real-world system, but

deciding between these options requires us to trade off realistic scale for realistic resource

bottlenecks.

Testing in simulation with a program like ns-3 [80] would allow us to scale to thousands

of nodes, but with each being a simplistic approximation of real hardware. Emulation with

programs like Mininet [81] sacrifices some of that scale for added realism, but with virtual

devices still sharing key system resources that could manifest as critical bottlenecks. Testing

94

in an isolated physical testbed provides unparalleled realism in resources, but growing such

a testbed to anywhere near Internet scale would be prohibitively expensive.

Resource bottlenecks are a key component of the approach to mitigation design we present

in Chapter §4, and of our experimental methodology. As our results in Chapter 6 will

demonstrate, subtle changes in resource availability can have a tremendous impact on the

apparent impact of DoS attacks and the efficacy of mitigations. We therefore opt to conduct

our experiments in a physical testbed, in order to maximize realism. Specifically, we have

generously been given access to the recently updated DeterLab testbed, operated by the

Information Sciences Institute (ISI) at the University of Southern California (USC) [82].

DeterLab was explicitly designed for this sort of network security research — in addition

to isolating nodes from the public Internet, it also provides exceptional realism, flexibility,

and reproducibility. We have effectively bare-metal access to testbed devices, which allows

us to make arbitrary OS and kernel modifications that may be needed to implement mit-

igations, and also removes the risk of resource sharing with other users jeopardizing our

experiments. However, we also have the option to create virtual machines and even combine

the two in hybrid topologies. This lets us maximize realism where it matters most by us-

ing physical devices for the server and routers (where most bottlenecks occur), but leverage

virtual machines to create larger numbers of clients and attackers (where bottlenecks are

less significant). Devices are fully under our control while we have them reserved, but the

DeterLab testbed as a whole is shared among many students and researchers – we cannot

monopolize those resources, so we try to make the most of a small set of devices. For ref-

erence, the main topology used for our experiments in Chapter 6 consists of 7 bare-metal

nodes and 20 virtual ones, though again the topology itself is a variable that must be consid-

95

ered in our methodology. Recent updates to DeterLab also provide support for Ansible [83],

which allows us to fully automate the processes of configuring devices, generating traffic, and

collecting data. In addition to simplifying the task of running experiments, this also helps

improve the consistency of our results by ensuring we follow precisely the same steps each

time. We can also easily share experiment “playbooks” with other researchers who may want

to reproduce or expand on our work.

5.3 Performance Metrics

The starting point for all of our metrics is the selection of some underlying indicator of

system performance. This could be a “legacy” metric like round-trip-time (RTT), throughput,

gooodput, loss, or jitter; a resource metric like CPU utilization or network queue lengths; or

something more complex.

Following recommendations from prior work by Mirkovic et al. [49]–[51] we rely primarily

on transaction-oriented metrics derived from client-side application-layer data. These reflect

the QoS experienced by end users more directly than so-called “legacy” metrics like RTT and

loss can, since different applications may have drastically different resource requirements. For

example, real-time audio applications like VoIP require low latency to prevent users from

talking over one another, but need very little bandwidth and can tolerate a large amount

of loss (at the human-layer if necessary, by simply asking “Could you please repeat that?”).

High definition video streaming on the other hand requires high throughput to deliver its

large amounts of data, but can tolerate significant latency by buffering before playback. If we

want to know how a DoS mitigation will impact users we need to measure the applications

96

they actually use.

Additionally, these client-side metrics tend to be much more lightweight than others.

For a server to measure its CPU utilization it must expend some CPU cycles, and for a

router to measure its bandwidth saturation it must interrupt packet processing. The act of

measuring resource utilization increases resource utilization, in a way that cannot always be

cleanly separated from the processes we actually want to measure. With client-side metrics

we simply record a timestamp, attempt a transaction, then record the exit code and another

timestamp. The overhead incurred from recording timestamps and status codes falls fully

outside the time window of the transaction which prevents interference, and the resulting

data requires clients to store only a handful of bytes per transaction which enables long-

running experiments.

For these sort of transaction-oriented performance metrics, QoS can be defined as either

the number of transactions a client can complete in a given period of time, or inversely as

the average time it takes to complete a single transaction. Both may be useful to consider,

and the way we capture data enables both to be extracted during analysis. Since our aim

is to maximize QoS, we typically use the more intuitive framing of transactions-per-second

(TPS).

It may be useful to track multiple underlying metrics and repeat our analysis process for

each one. Transaction-oriented metrics are exceptional for determining whether a mitigation

is effective, but resource metrics can provide more insight into why a mitigation behaves

the way it does. Therefore our typical process is to start by looking at transaction-oriented

metrics, and then examine resource metrics to help explain any unexpected results. Gener-

ally, one should select a set of metrics that is most relevant to the services being defended.

97

For example, to evaluate SYN Cookies which are intended to preserve a server’s ability to

accept new TCP connections, we can have clients repeatedly attempt to set up and tear

down TCP connections, recording the start time, end time, and status for each attempt.

Throughout this process we may also want to periodically record the number of open and

half-open connections at the server, or the queue length and drop rate on some bottleneck

link.

Once some (set of) performance metric(s) is selected, we can begin building more complex

metrics from it. Again, the metrics defined in the following sections are agnostic to the

selection of performance metric – they simply describe changes in some value.

5.4 Context-Specific Metrics

The core of our methodology is to measure each selected performance metric during four

discrete experiments, controlling for both separate and combined effects of an attack and a

mitigation. We refer to these experiments as follows:

• UB (Unmitigated Baseline): No attack, No mitigation

• MB (Mitigated Baseline): No attack, Mitigation

• UA (Unmitigated Attack): Attack, No mitigation

• MA (Mitigated Attack): Attack, Mitigation

We use these same acronyms to represent the average value observed for our chosen

performance metric during the corresponding experiment. From these four values we can

98

derive several further metrics for describing attacks and mitigations, as illustrated in Figure

5.2. First, we refer to the result of the 𝑈𝐵 experiment as the baseline QoS – this represents

the ideal scenario. Deploying a mitigation incurs some (hopefully negligible) amount of

overhead, defined as 𝑈𝐵 −𝑀𝐵. We can contextualize this value by normalizing it against

the baseline performance, defining the mitigation’s percent overhead as 𝑈𝐵−𝑀𝐵
𝑈𝐵

* 100

Next we define an attack’s threat as 𝑈𝐵−𝑈𝐴: the amount by which it reduces QoS when

no mitigation has been deployed. Here too, it is helpful to consider the threat relative to

the baseline. We define an attack’s percent threat as 𝑈𝐵−𝑈𝐴
𝑈𝐵

* 100. An attack’s damage

is then defined as 𝑈𝐵 − 𝑀𝐴: the amount by which it reduces QoS with the mitigation

deployed. Again, the percent damage relative to the baseline is defined as 𝑈𝐵−𝑀𝐴
𝑈𝐵

* 100.

Lastly, we can define a mitigation’s efficacy as the difference between the threat an

attack poses and the damage it is able to realize: (𝑈𝐵 − 𝑈𝐴)− (𝑈𝐵 −𝑀𝐴) = 𝑀𝐴− 𝑈𝐴.

Normalizing this value is slightly more complex – in most cases we will want to measure

efficacy as a percentage of baseline performance as above, but there is also value in viewing

it as a percentage of the threat. As the threat approaches 100% these two interpretations will

converge to the same value. When the threat is a small fraction of the baseline however, a

completely successful mitigation will restore the same small fraction of performance relative

to the baseline. In that case measuring efficacy as a percentage of the threat instead reveals

that the mitigation is working as intended. The more standard interpretation of efficacy as

a percentage of the baseline (and specific to some context 𝐶) is formalized in Equation 5.1:

99

𝐸𝐶 =
𝑡ℎ𝑟𝑒𝑎𝑡− 𝑑𝑎𝑚𝑎𝑔𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
* 100

=
(𝑈𝐵 − 𝑈𝐴)− (𝑈𝐵 −𝑀𝐴)

𝑈𝐵
* 100

(5.1)

This single value of efficacy can represent data from arbitrarily many clients performing

arbitrarily many transactions over arbitrarily long periods of time. Running experiments

for longer durations provides greater statistical significance. There is still value in observing

how underlying metrics change over time as is common in prior work, to measure the ramp-

down and ramp-up in performance as an attack starts and ends, but we are interested in

comparing across large sets of variables which requires abstracting away this detail. Our

tests have shown that performance typically drops to a new steady state almost immediately

upon the start of an attack, though the transition back to baseline performance is often

longer. In the case of SYN floods, retransmitted SYN-ACKs may continue to flood the

network for upwards of 30 seconds after the attack ends. It may be of interest to record the

duration of these transition periods, but generally we exclude them to more cleanly compare

steady-state performance across the four experiments.

Note that our efficacy metric alone is not sufficient for evaluation, it should always be

presented in tandem with a mitigation’s overhead. Only when combined can they provide

an accurate indication of how practical a mitigation is for some specific context. In many

contexts there is an inherent trade-off between them that must be evaluated to determine

whether a mitigation is worth deploying: how much overhead can be justified outside periods

of attack in order to protect against a potentially catastrophic threat? Yet the two may

100

Figure 5.2: Our four experiments and key context-specific metrics.

depend on entirely different context variables, or depend on the same variables in different

ways. We even need to evaluate trade-offs between different low-level performance metrics;

for example, how should we value a mitigation that offers high efficacy in terms of client QoS

but also imposes high monetary overhead, or one that improves fairness during an attack at

the cost of increased energy consumption?

5.5 Cross-Context Metrics

There are innumerable factors that may constitute a meaningful change in context, including

variations in attack type and rate, client application, network topology, device hardware,

etc.. We divide these factors into two categories which lend themselves to different forms of

analysis: categorical variables and numerical variables.

Categorical variables include client protocols, device hardware and operating systems, as

well as certain aspects of the network topology. The simplest way to evaluate such factors

is through a side-by-side comparison of results from separate sets of the four experiments

101

described above. For example, say we want to compare SYN Cookie implementations in the

Linux and BSD kernels. We run a full suite of experiments (with and without SYN floods

being launched, and with and without SYN Cookies deployed) using a Linux-based server,

then re-run the same experiments with a BSD server. It may be helpful to see raw data from

these two scenarios side-by-side, or we can compute their difference to make statements

like “the Linux implementation has 𝑋% higher overhead than the BSD implementation”

or “the Linux implementation is 𝑌 times more effective than BSD’s.” We could compute

a weighted average across multiple categories to make more general statements about a

mitigation’s utility, but assigning appropriate weights is challenging in many contexts, and

the observation of an extreme outlier or a drastic difference between two categories is likely

to be of more interest than a global average.

Numerical variables are those with a range of values (such as attack rate, client request

frequency, and bottleneck link capacity), such that we can reason about increases and de-

creases in value. A general approach for any numerical variable is to plot it on the x-axis

of a line graph with the mitigation’s efficacy/overhead on the y-axis. Simultaneous analysis

across two variables can be illustrated with a heatmap or by simply adding additional lines.

The rate/volume of attack is a particularly noteworthy numerical variable which warrants

more complex analysis. By definition we expect the threat posed by a volumetric attack

to depend heavily on this variable, which gives it universal importance within our scope.

Additionally, since 𝑈𝐴 and 𝑀𝐴 experiments with an attack rate of zero would be identical

to our baseline 𝑈𝐵 and 𝑀𝐵 experiments, we can simply compare the results of experiments

as a function of attack rate, without needing to separately account for the mitigation’s

overhead.

102

Figure 5.3: An example of how we might expect a DoS mitigation to change the way QoS
depends on attack rate. This dependency can be defined by some function 𝑄 parameterized
by the attack rate 𝑟, which morphs to function �̄� when a mitigation is deployed. Deploying
a mitigation imposes some amount of overhead on the system, but hopefully improves QoS
under some effective range of attack rates. Under extremely high rates of attack client
QoS will approach zero regardless of the mitigation(s) deployed. We define the mitigation’s
efficacy with respect to attack rate as the area of the dark green shaded region to the bottom
right of 𝑟, minus the area of the light red shaded region to the upper left.

Consider Figure 5.3, which shows a simplified example of how client QoS (depicted as a

percentage of the baseline QoS) typically depends on attack rate (𝑄), and how a mitigation

may alter the function describing that dependence (�̄�). There will always be some rate of

attack 𝑟𝛼 below which no measurable degradation of QoS can be observed – here a mitiga-

tion’s efficacy is undefined since the threat is zero. There is also some rate 𝑟𝜔 above which

the threat is so severe that client QoS effectively drops to zero, and a (hopefully higher) rate

𝑟𝜔 at which QoS is zero even with the mitigation in place (because the system is so congested

with attack traffic that client requests never reach the server). Between the extremes of 𝑟𝛼

103

Figure 5.4: An example of how our perspective of Figure 5.3 might be skewed by a long-tail
probability distribution of attack rates. Higher rates of attack are significantly less likely
to occurr, meaning we should place less weight on their effects. By multiplying Quality
of Service by probability of attack on the y-axis, we see that this distribution augments
overhead from no/low-rate attacks and diminishes efficacy from high-rate attacks.

and 𝑟𝜔 exists some rate 𝑟, the lowest attack rate for which a mitigation’s benefits begin to

outweigh its overhead.

The mitigation’s efficacy with respect to attack rate is visualized as the area of the

dark green shaded region to the bottom right of 𝑟, minus the area of the light red shaded

region to the upper left. More formally, we can define this as:

𝐸(𝑟) =

∫︁ 𝑟𝜔

0

�̄�(𝑟) 𝑑𝑟 −
∫︁ 𝑟𝜔

0

𝑄(𝑟) 𝑑𝑟 (5.2)

We refer to the interval (𝑟, 𝑟𝜔) as the mitigation’s effective range. Ideally a mitigation

should only be deployed when attack rates are in this range – for lower rates the mitigation’s

104

overhead will make it counter-productive, and for higher rates it will have no effect. Yet in

practice it may be infeasible to toggle a mitigation on and off precisely when attack rates

cross these thresholds. Some attack traffic is indistinguishable from legitimate traffic which

makes it impossible to determine the attack rate, and toggling some mitigations on and off

may require delays or even device resets.

In these cases, we need some way to determine whether a mitigation is worth enabling

permanently (or at least for some extended period of time that sufficiently amortizes the

cost of toggling). The first step is to identify the distribution of attack rates that the server

expects to receive. This is an extremely challenging problem requiring longitudinal data

about past traffic spikes for some context of interest. In most cases we expect to see a long-

tail distribution, with no attack the vast majority of the time, somewhat frequent small-scale

attacks, and very rare instances of extremely high-volume attacks.1

After defining an expected distribution, we multiply the two functions in Figure 5.3 by it.

We then integrate the resulting functions and take their difference to compute the mitiga-

tion’s adjusted efficacy with respect to the expected attack rate. More precisely: let

𝑄(𝑟) be the function describing QoS with respect to attack rate (r) without the mitigation

deployed; let �̄�(𝑟) be the function describing QoS with respect to attack rate (r) with the

mitigation deployed; and let 𝑃 (𝑟) be the function describing the probability distribution of

attack rates. Then the adjusted efficacy with respect to expected attack rate distribution is

defined as:
1Note that this is from the perspective of a single device, making local decisions about its own mitigation

strategies. Looking Internet-wide there are almost always multiple ongoing DoS attacks at any given time.

105

̃︀𝐸(𝑟) =

∫︁ 𝑟𝜔

0

𝑃 (𝑟)�̄�(𝑟) 𝑑𝑟 −
∫︁ 𝑟𝜔

0

𝑃 (𝑟)𝑄(𝑟) 𝑑𝑟 (5.3)

Assuming 𝑃 (𝑟) is a long-tail distribution as described above, this formulation will ap-

propriately emphasize the overhead imposed by the mitigation in the common case where

no attack is present, and de-emphasize benefits the mitigation provides in rare instances of

high-volume floods.

This adjusted efficacy is perhaps the best single-value indicator of whether a mitigation

is worth deploying across the contexts of differing attack rates, but still only applies to a

single broader context (a single network topology, client application, etc.). After computing

̃︀𝐸(𝑟) and/or other complex metrics describing the mitigation’s relation to attack rate, we

can return to our simpler approaches to cross-context analysis. For instance, how does

the mitigation’s effective range depend on bottleneck link capacity? How do its 𝑟 and

̃︀𝐸(𝑟) values depend on the choice of client application? Answering such questions is vital to

understanding when and where a mitigation should be deployed, though a full understanding

will require a tremendous amount of experimentation.

5.6 Summary

In summary, this chapter has presented an experimental methodology and set of metrics for

more accurately evaluating DoS attacks and mitigations. Our experimental topologies are

microcosms representing small portions of the Internet. A small set of clients attempt to

communicate with a single server, while a small set of attackers attempt to disrupt them.

Crucially, we route attack backscatter (generated in response to spoofed-source attack pack-

106

ets) through key bottlenecks before dropping it for safety. We use a physical testbed to

maximize realism of critical resource bottlenecks in the system, but also leverage emulation

for select devices to increase the size of our network.

Our metrics are designed to work with arbitrary performance metrics, describing how

they change in response to the effects of attacks, mitigations, and various context variables.

We discussed how to accurately measure a mitigation’s efficacy and overhead, why the two

should be considered as a pair, and how to interpret the relation between them based on the

likelihood of attack. In the following chapter (§6) we apply this measurement framework to

evaluate the novel mitigations designs we presented in Chapter §4.

107

Chapter 6

Empirical Analysis

Here we present our experimental analysis of the mitigations described in Chapter §4, follow-

ing the measurement framework defined in Chapter §5. Section §6.1 discusses the topology

on which our experiments are conducted.

Before evaluating our own mitigations, we first provide an examination of SYN Cookies

in Section §6.2. As discussed in §3.2.3, they are broadly deployed in the wild despite a lack of

standardization and a dearth of empirical analysis. While not explicitly designed to combat

high-volume attacks, it is important to understand exactly where and how SYN Cookies

fail under such conditions. They also inform what we might hope to see in a more effective

mitigation, providing a useful reference point against which to compare our other results.

Next we present our evaluation of SYN Padding in Section §6.3. This extremely simple

mitigation provides similar results as SYN Cookies when attackers fail to participate, with

the notable advantage that verification can be dislocated from the server to enable earlier

packet drops and distributed verification. This is a step in the right direction, but SYN

Padding also has two key shortcomings: if attackers do participate and pad their packets it

108

has low efficacy (unless they are bandwidth constrained which we expect is rare); and it has

poor scalability since the amount of padding is limited by the maximum packet length.

Both of these issues are overcome by our second, more robust mitigation SYN PoW,

evaluation of which is presented in Section §6.4. It protects against attackers whose traffic

volume is limited by CPU resources, which we believe to be the common case, and offers

a high degree of freedom in tuning proof difficulty to increase efficacy at the cost of higher

overhead. It also provides the same portability of verification and stateless operation as SYN

Padding, giving it a clear advantage over SYN Cookies.

6.1 Experiment Topology

Figure 6.1 illustrates the topology on which our experiments are conducted, following the

general experiment model presented in §5.1 and realized in the DeterLab network testbed

as discussed in §5.2. Recall that our overall approach is to measure the ability of clients to

complete transactions with the server, controlling for the separate and combined effects of

an attack and a mitigation. We divide clients into four subnets, labeled A-D in order of their

proximity to the server. We refer to subnets A and B on the near side of the bottleneck link as

“local”, and to subnets C and D on the far side as “remote”. As our results will illustrate, the

relative location of devices can have a tremendous influence over baseline performance, attack

impact, and mitigation efficacy. Local clients tend to fare significantly better than remote

ones, maintaining service under higher-volume floods. We divide attackers across subnets B

and D, but primarily rely on the subnet D attackers since only they are constrained by our

bottleneck link. The Sink node (to which attack backscatter traffic with public destination

109

IP addresses is routed before being dropped) is located in subnet C, and the server is in

subnet A.

While we have a high degree of freedom in adjusting the bottleneck link’s capacity,

its latency is held constant at 1ms across all experiments. We acknowledge that this is

significantly lower than that of most real-world networks, but this is an unfortunate limitation

of our testbed environment. The physical devices of our testbed are all in very close proximity

to one another (within the same data center), and adding artificial latency requires some

intermediary device to buffer packets for the duration of that latency. Under high-volume

floods this buffering quickly becomes untenable. As a concrete example, adding 100 ms of

latency during a 50 Mbps flood would require at least a 5Mb packet buffer. Since SYN-ACKs

sent by the server in response to the SYN flood also transit the bottleneck link, the actual

requirement is double that buffer capacity. In our attempts at conducting higher-latency

experiments this buffering caused inconsistent traffic rates at best, and often resulted in

full crashes of the network emulation tool which makes any data collected unusable and

requires an experiment to be restarted from the beginning. To prevent the emulation tool

from becoming the primary bottleneck, we limit ourselves to low-latency experiments for the

time being. As discussed in §7, future experiments in simulated topologies could overcome

this hurdle, at the cost of a reduction in realism.

Even though remote clients do not experience what would typically be considered high

latency, their RTT to the server may still be up to ten times that of local clients. We measure

this baseline latency between the server and one client from each subnet1, sending 100

sequential pings from each at a 0.1 second interval (well above the maximum latency). Table
1All clients within the same subnet exhibit nearly identical behavior.

110

s0

c0

c1

c2

Bottleneck
Link

r0r2

r4

LANLAN

c5

c4

c3

a1 a2

a0 a2

r1 r3LAN

Subnet A (Local)Subnet B (Local)

c8

c7

c6

sink0

Subnet C (Remote)

LAN

c5

c4

c3

a1 a2

a0 a2

Subnet D (Remote)

AttackerClient Server Sink Router

Legend

Figure 6.1: The network topology used in our experiments. Nodes are named with an
abbreviation of their role: s for server, c for client, a for attacker, and r for router. The
labeled bottleneck link between routers r0 and r4 can be constrained using network emulation.
By default it is set to 1Gbps capacity, 1ms latency, and 0% loss. We label the four subnets
A through D to help distinguish results from clients in different locations. We often observe
drastically different behavior between these subnets, particularly when comparing the two
local subnets (A and B) against the two remote ones (C and D).

111

6.1 illustrates the mean, minimum, maximum, and standard deviations we observe. Remote

clients are below 3ms on average which is objectively quite fast, but still slow compared with

0.237 ms for the client in Subnet A and less than double that for the client one hop away in

subnet B. No packet loss was experienced during these baseline latency measurements.

As our results in the remainder of this chapter illustrate, these difference in latency

are sufficient to observe significant differences in client performance, attack impact, and

mitigation efficacy. If all latencies were multiplied by a constant factor to reach more realistic

values (ie. a minimum RTT of 2.28 ms for subnet A, 4.0 ms for subnet B and 26.8 ms for

subnets C and D, if multiplying all by a factor of 10), we would expect to see the same

general patterns distinguishing local and remote clients. The locations of devices relative to

the attack and the ratio of their latencies have a greater impact than the absolute value of

their latencies.2

Subnet Client Min RTT (ms) Mean RTT (ms) Max RTT (ms) 𝜎 (ms)
A c0 0.228 0.273 0.329 0.013
B c3 0.400 0.434 0.613 0.021
C c6 2.682 2.796 3.194 0.114
D c9 2.682 2.859 3.282 0.143

Table 6.1: Baseline latencies between each client subnet and the server. For one client in
each subnet we perform 100 pings with a 0.1 second interval and report the minimum, mean,
maximum, and standard deviation. Local clients in subnets A and B observe average RTTs
of <0.25ms and <0.5ms respectively. Remote clients in subnets B and C also have very
fast connections with <3ms average RTT, yet this is an order of magnitude greater than for
clients in subnet A. No packet loss is observed.

2Within reason. Under extremely high latency applications will begin to fail completely. Our clients fail
and retry after a one second delay, so baseline performance would drop to zero with an RTT of ≤ 1000 ms.

112

6.2 SYN Cookies

We begin with an examination of SYN Cookies in isolation, in order to examine how they fail

under high-volume SYN Floods, and to provide a point of comparison for our later analyses of

SYN Padding and SYN PoW. We conduct experiments on a subset of the topology depicted

in Figure 6.1. We measure attacks launched from 1, 2, 3, and 4 attackers, all in the remote

set of nodes a4-a7, in order to observe the effects of increasing attack volume. Each attacker

is limited to 10% of its available CPU resources using the cpulimit utility. This reduces

the maximum threat, which allows us to observe the impact of increasing attack volume

more clearly – with 100% CPU resources the threat is so severe that the mitigation fails

completely on remote clients (although it is near 100% effective on local ones).

In all experiments, we have the full set of twelve clients attempt to communicate with the

server, and we separately test the following three client/server applications. Typical packet

exchanges for each application are depicted in Figure 6.2.

• TCP Setup: The client initializes a TCP connection with the server and then im-

mediately, but cleanly tears it down. This ideally results in the following five-packet

exchange, as depicted in the left side of Figure 6.2: SYN, SYN-ACK, ACK, FIN-ACK,

ACK for each transaction. While we expect most real-world TCP transactions will be

longer connections involving some exchange of data3, this minimal transaction provides

a good indicator of a server’s availability in terms of its ability to open new connections.

This is the primary resource SYN Cookies are designed to protect.
3It’s worth noting that clients can piggyback an early data payload in their ACK packet. So while it may

be uncommon, this simple five-packet exchange does have a practical use.

113

• HTTP 1KB: The client requests a 1KB file from the server over HTTP using the curl

command. The file’s contents are randomly generated data, and caching is disabled to

ensure independence between transactions. Under normal conditions, a file of this size

can be transferred using two data packets (PUSH-ACK), as depicted in the right side

of Figure 6.2.

• HTTP 1MB: The client requests a 1MB file from the server over HTTP, as above.

A file of this size requires many more packets to transfer, though the exact number

is surprisingly variable. In the absence of any other traffic, we’ve observed the same

client-server pair require anywhere from 31 to 46 data messages to complete a 1MB

transfer. Each PUSH-ACK will prompt at least one ACK in response, unless lost in

which case it will be retransmitted. Some ACKs may also be lost, especially those from

remote clients suffering higher latency, which will also be retransmitted. The entire

exchange may exceed 100 packets, of which notably only one is a SYN.

Figure 6.3 illustrates how baseline performance differs across these applications, and how

it depends on client location. Each dot represents a single client device with a single set

of parameters. As discussed in §6.1 above, we refer to the clients on the near side of the

bottleneck link to the server (c0-c5) as “local” and those on the far side (c6-c11) as “remote”.

As expected we observe significantly higher baseline performance for local clients, and for

simpler client applications. In several cases we see two clear bands emerge for the same

application in the same location; this is explained by the difference between the two subnets

on the same side of the bottleneck, with subnet A slightly outperforming B, and C slightly

outperforming D. Local clients are able to complete over 400 of the simple TCP Setup

114

Client Server

SYN

SYN-ACK

ACK

FIN-ACK

ACK

Client Server

SYN

SYN-ACK

ACK

PUSH-ACK

ACK

PUSH-ACK

ACK

. . .

TCP Setup HTTP Transfer

FIN-ACK

FIN-ACK

ACK

Figure 6.2: The packet exchanges that typify our client applications. The TCP Setup
client initiates a connection and then immediately (but cleanly) tears it down in a 5-packet
exchange. The HTTP clients retrieve files from the server using some number of PUSH-ACK
packets. Transferring a 1KB file typically takes two PUSH-ACKs (and two corresponding
ACKs) as depicted, while larger files will take more. A 1MB file may take ∼ 30 − 50. In
longer exchanges, the server will often send several PUSH-ACKs in a burst (as its window
size permits) followed by an equal burst (assuming none are lost) of ACKs from the client,
rather than the consistent alternation depicted here.

115

Figure 6.3: Baseline performance based on client application and location, for our analysis
of SYN Cookies. As before we see better performance for clients that are local to the
server, and for those running simpler applications requiring fewer round trips per transaction.
Constraining the bottleneck link from 1Gbps to 100Mbps has little impact except for remote
clients running the HTTP 1MB application, which has significant throughput requirements.
Their already slow service drops to near zero.

transactions per second, while remote ones complete only ∼ 150. The more complex HTTP

applications fare significantly worse in both cases because they require more round trips to

complete. Remote clients often reach the 1 second timeout before they are able to complete

a 1MB transfer, resulting in a baseline near zero.

It is worth noting that in separating results based on bottleneck link capacity we see

surprisingly little difference between the 1Gbps and 100Mbps contexts, except in the case of

the 1MB HTTP transfer application. That application has significantly higher throughput

requirements than the others, and so its performance unsurprisingly drops to near zero when

the bottleneck is constrained. Local clients should not and do not exhibit any differences,

since their traffic never transits the bottleneck.

116

Next we evaluate the overhead of SYN Cookies on client performance outside periods of

attack. Figure 6.4 shows that the mean overhead is near zero across all contexts. The variance

we observe can be accounted for by the variance in baseline performance. If performance

happens to be slightly below average when the baseline is measured and slightly above average

when overhead is measured then overhead will appear negative, and vice versa. Relative to

these natural fluctuations clients experience in performance over time, overhead is negligible

from the application-layer perspective. The one extreme outlier of 100% overhead for a local

TCP Setup client in the 1 Gbps context is the result of a crash fault on a client device, not

an effect of SYN Cookies.

Note that overhead is presented here as a percentage, in order to normalize it to the

baseline performance. A measurement of 10% overhead could indicate a decrease of nearly

50 transactions per second (for local clients running the TCP Setup application), or as

little as a fraction of a transaction per second (for remote clients running the HTTP 1MB

application).

Next we measure the threat posed by the SYN flood attack, without the mitigation

deployed (UA). Service is completely disrupted for both HTTP clients with a threat of

100%, while the simpler TCP client manages to complete a few occasional transactions.

Even a single attacker node operating with just 10% of its CPU resources is able to degrade

service to just ∼ 4% of baseline performance with an unconstrained (1 Gbps) bottleneck

link.

Finally, we examine the efficacy of SYN Cookies at mitigating this devastating attack,

with results depicted in Figure 6.6. We see that local clients consistently experience efficacy

near 100%, with the more complex HTTP 1MB application lagging slightly behind the

117

Figure 6.4: The overhead of deploying SYN Cookies at the server. It is negligible relative to
variance in the baseline, with a mean near zero regardless of client location, client application,
or bottleneck capacity. The one extreme outlier of 100% overhead represents an unrelated
device failure, not an effect of SYN Cookies.

118

Figure 6.5: The threat posed by our SYN flood attack, for our analysis of SYN Cookies.
HTTP client applications experience a complete disruption of service with 100% threat,
while the simpler TCP Setup client manages to complete occasional transactions but at a
greatly reduced rate. Bottleneck capacity, client location, and number of attackers all have
little impact, as even the least potent attack is still devastating across all contexts.

119

Figure 6.6: The efficacy of SYN Cookies at mitigating high-volume SYN Flood attacks.
Local clients experience near 100% efficacy, while remote ones see a steady decline as the
number of attackers increases.

other two. For remote clients this trend is inverted, with the more complex applications

experiencing higher efficacy. We also see the clearest impact of attack volume in remote

clients, with a steady decline in efficacy for all applications as the number of attackers

increases. The most significant difference between the 1 Gbps and 100 Mbps bottleneck is the

large increase in efficacy for remote HTTP 1MB clients when the bottleneck is constrained.

This follows from the drop in baseline performance observed for those same clients in Figure

6.3. When the baseline is very low the efficacy tends to be higher – it is typically much easier

for a mitigation to restore performance from 0 to 1 transactions per second than from 0 to

100.

These results clearly show that the efficacy of SYN Cookies scales poorly with attack

volume, at least for clients whose traffic must share a bottleneck link attackers. Again, SYN

120

Cookies were not explicitly designed to protect against such high volume floods, but it is

valuable to see exactly how their efficacy declines as the flood’s volume increases. Since

most real-world clients are likely positioned more similarly to our remote clients than our

local ones, we expect SYN Cookies offer insufficient protection under volumetric attacks.

Even our most powerful flood with four attackers is paltry compared to actual attacks on

the modern Internet.

Fortunately, the overhead of SYN Cookies is low enough that leaving them deployed

during such floods is unlikely to cause harm, though since each SYN packet requires a fixed

amount of work to generate a cookie, there is a possibility that even larger attacks would

result in more significant overhead, and adding a large number of additional clients could

have the same effect. Resource limitations of the testbed we use preclude such large-scale

experiments, but we encourage future work (either in a larger testbed or in simulation) to

confirm how the overhead of SYN Cookies scales under extremely high-volumes of traffic, be

it malicious or legitimate.

In summary, while leaving SYN Cookies deployed against high-volume SYN floods is

unlikely to cause harm, it is also unlikely to provide adequate protection for most clients.

This further strengthens the case for developing new mitigations that are tailor-made to

combat volumetric attacks, such as our SYN Padding and SYN PoW proposals.

6.3 SYN Padding

Here we present the evaluation of our SYN Padding mitigation, defined in Section §4.2.2.

We first explore its objective ability to reduce the volume of a SYN flood in Section §6.3.1,

121

followed by its subjective overhead and efficacy from the client perspective in Section §6.3.2.

We note that SYN Padding is intended primarily as a toy example to illustrate our TIPs

approach, and as a thought experiment to explore the relation between packet length and DoS

resilience. While we achieve promising results in certain contexts, we would not necessarily

recommend deploying SYN Padding anywhere as presented – rather our hope is that these

findings will inform the protocol design process going forward, and perhaps trigger a re-

examination of all minimum packet lengths at the network layer (in IPv4 and IPv6).

6.3.1 Traffic Rate/Volume Reduction

We begin our analysis of SYN Padding by measuring the amount by which it is able to

reduce the volume of traffic produced by a single attacker arriving at the server. These

initial experiments are performed on the topology depicted in Figure 6.1, but using only a

small subset of the devices. For each set of parameters tested, a 30 second SYN flood is

launched from node a5 with a destination of node s0. The SYN Padding verifier is deployed

on the ingress side of node r0’s network interfaces, with varying proof thresholds. Node s0

records the average attack rate in bits per second and the average attack volume in packets

per second, using the tcpstat utility. This tool outputs one data point for every 5 second

window – we exclude the first and last data points for each trial as their windows include

time before the attack starts and after it ends. We then average results from the middle 20

seconds which represent the real steady-state nature of the attack.

We begin with the bottleneck link set to 1Gbps, which is not actually expected to be

restrictive. In this case the attacker’s maximum possible bitrate (without SYN Padding) is

122

61.43 Mbps (166.94 Kpps). Deploying SYN Padding here actually proves counterproductive,

keeping the flood’s packet volume relatively constant at 168.22, but increasing its rate to

107.66 Mbps. This is not surprising, since our starting assumption is that most attackers are

naturally CPU-bound, and we expect SYN Padding to be effective only when the primary

bottleneck for the attacker is its outgoing bandwidth. That means for best results we need to

constrain that bandwidth to below its maximum rate of 61.43 Mbps. To verify this we next

repeat our measurements of the attack rate and volume, with and without SYN Padding,

this time using DeterLab’s network emulation utilities to artificially restrict the bandwidth

of the bottleneck link between routers r4 and r0. Values tested are ∈ {500, 100, 75, 50, 25, 10}

(Mbps).

Our assumption is that per-packet overhead tends to dominate in volumetric floods, at

least for in-network devices. Each packet forces forwarders to perform routing table lookups,

update TTL fields, and compute checksums, all of which incur fixed costs regardless of the

packet’s contents.4 Figure 6.7 shows the impact of SYN Padding on attack volume (in Kpps).

We see that padded packet floods are always lower volume than unpadded ones, except

when the bottleneck is completely open at 1Gbps, in which case the two are equivalent. As

expected, the benefit is greatest when the bottleneck is reduced below the attacker’s natural

sending rate of 61.43 Mbps. We draw dotted black lines between padded and unpadded

points at the same x-value to aid with visual comparison. In summary, if (as we assume)

the costs of handling a flood are are primarily per-packet rather than per-bit, then packet
4Admittedly, the effort required to compute a checksum does depend on packet length, but to a lesser

extent than application-layer operations that receivers typically perform. For example, a packet that contains
a large file and asks the receiver to compute a diff between it and some other existing file would incur
predominantly per-bit overhead. Recall that volumetric attacks typically comprise extremely simple packets
which contain no such application-layer payloads.

123

Figure 6.7: The change in attack volume (in terms of thousands of packets per second)
caused by the addition of SYN Padding. Dotted black lines are drawn to connect points at
the same x-value in order to help visualize the difference.

padding is a promising strategy for mitigation.

The trade-off for reducing attack volume in this way is an increase in attack rate. In a

padded flood attackers send fewer, longer packets. Again, we assume the benefits of receiving

fewer packets outweigh the detriments of receiving longer packets, but it is important to

examine how SYN Padding impacts an attack’s bitrate in addition to its volume. If attackers

truly are bandwidth-constrained the attack rate should remain unchanged at their sending

limit. If not, their floods will contain more bits with the same amount of packets, causing

the mitigation to be somewhat counterproductive.

Figure 6.8 shows attack rate (in Mbps) as a function of bottleneck capacity, both with and

without SYN Padding. The dashed black line depicts the equation 𝑦 = 𝑥, representing the

124

maximum possible rate that could be sent if the attacker were to fully saturate the bottleneck

link. As expected, we see that both padded and unpadded attacks closely approximate this

ideal rate as long as the bottleneck is constrained to below the attacker’s natural (CPU-

bound) flooding rate. Once the bottleneck link capacity is loosened above that threshold, we

see the attack rate flatten as the primary bottleneck instead becomes the attacker’s CPU.

The unpadded attacker appears CPU-bound with a bottleneck capacity of 75 Mbps and

above, indicating that its tipping point must be somewhere between that value and the next

lowest of 50 Mbps, which matches expectation based on the 61.43 Mbps maximum rate.

The padded attacker becomes CPU-bound with a bottleneck capacity of approximately 100

Mbps, again matching expectation based on its 107.66 Mbps maximum rate. We attribute

the slight uptick in both rates for extremely high bottleneck capacities to imperfections in

the network emulation tool. This also explains the slight gap observed between the real and

ideal rates when attackers are bandwidth-constrained.

Figure 6.9 provides another perspective on this same data, combining information from

Figures 6.7 and 6.8. Here the x-axis again indicates the bottleneck link capacity, while the

y-axis now shows the percent change in attack rate/volume (with rate represented by the

blue line and volume by the orange). The vertical dashed line again indicates the attacker’s

natural flooding rate of 61.43 Mbps. Here we see that the attack’s rate is always increased

by padding (positive percent change) while its volume is almost always decreased (negative

percent change). As expected, we observe the highest volume reduction when the bottleneck

capacity is at or below the attacker’s maximum rate. For values of 75 Mbps and below SYN

Padding provides a consistent 36% reduction in the number of packets the server receives

(a -36% change in attack volume). Note that this threshold is slightly higher than the

125

Figure 6.8: The change in attack rate in terms of Mbps caused by the addition of SYN
Padding. Dotted black lines are drawn to connect points at the same x-value in order to
help visualize the difference. The dashed black line shows the equation y=x, representing
the maximum possible attack rate that could get through the bottleneck.

126

Figure 6.9: The percent change in attack rate and volume caused by the addition of SYN
Padding. The vertical dashed line indicates the attacker’s maximum attack rate without
padding when the bottleneck is unconstrained. As long as the bottleneck capacity is at or
below this value (or very slightly above it), SYN Padding succeeds in reducing the attack
volume by approximately 36%, at the cost of a roughly 10% increase in the attack rate.

attacker’s actual maximum rate – looking at Figure 6.8 this is not surprising, as we can see

the maximum rate received is always at least slightly less than whatever bottleneck capacity

is set – a bottleneck of 75 Mbps results in an actual unpadded attack rate of just 56.97

Mbps, which is indeed below the unconstrained maximum of 61.43 Mbps. The trade-off for

this sizeable reduction in attack volume is a modest increase in bitrate. When the attacker

is bandwidth-bound, its padded SYN floods contain approximately 11% more bits/second

than its unpadded ones. Therefore SYN Padding is only effective when the primary threat

comes from high volume rather than high rate attacks. That is, when the fixed overhead of

handling each packet outweighs the per-bit overhead of handling larger packets.

127

6.3.2 Client Overhead and QoS Impact

Our SYN Padding mitigation is clearly effective at reducing the volume of SYN floods from

bandwidth-constrained attackers, but we must evaluate its efficacy and overhead from the

perspective of actual clients as well. To that end we conduct further experiments on the

topology shown in Figure 6.1. This time the attack is launched from attackers a4-a7, on the

far side of the bottleneck link. We test SYN Padding with the full 40 bytes of padding. We

also measure the efficacy and overhead of SYN Cookies in the same context. Though not

designed to mitigate high volume floods they provide a valuable point of comparison. We

also test the effects of operating both mitigations simultaneously (referred to in our figures

as “SYN Cookies + Padding”). Bottleneck link capacities of 1000, 100, and 50 Mbps are

evaluated, with a 1ms bottleneck link latency in each case.

Our analysis begins by measuring clients’ baseline performance, with results depicted in

Figure 6.10. We should expect this to look essentially identical to the baseline measurements

for SYN Cookies shown in Figure 6.3 since the choice of mitigation has no bearing on the

baseline metric. However, our testbed is a complex dynamic system that cannot be perfectly

controlled – if we run SYN Cookies experiments one day and SYN Padding experiments the

next, we’re likely to see subtle differences in all measurements, including the baseline. For

this reason we repeat the full set of UB, MB, UA, and MA experiments for every set of

variables we test, and we include both versions of the baseline data to illustrate how it can

change over time. The key patterns are exactly the same as before however, with significantly

better performance for clients located closer to the server and for applications that require

fewer round trips to complete each transaction.

128

Figure 6.10: Baseline performance across client types, without the presence of an attack
or mitigation. Local clients are positioned on the near-side of the bottleneck link to the
server, remote clients are positioned on the far side. As expected, we observe significantly
better performance for local clients, and for simpler transactions that require fewer packet
exchanges to complete.

129

Figure 6.11: Overhead of our SYN-Padding mitigation compared with SYN-Cookies and the
two combined. In all mean overhead is extremely near zero, with 95𝑡ℎ percentile confidence
interval within +/− 10%.

Next we evaluate the overhead of mitigation on client performance outside periods of

attack. Figure 6.11 shows that the mean overhead is near zero for SYN Padding, SYN

Cookies, and the two combined. We observe some outliers of both high overhead and extreme

negative overhead (indicating that the mitigation somehow improves performance beyond

the baseline). As with SYN Cookies, these can be accounted for by the variance observed

in the baseline performance. From the application-layer perspective, the average overhead

is negligible.

Next we introduce the attack, and as seen in Figure 6.12 the threat it poses is near-

absolute. Like the baseline, threat is not a mitigation-specific metric, and so we see similar

results as in Figure 6.5. The two HTTP clients lose 100% of their baseline performance in all

130

Figure 6.12: The threat posed by the attack. Lines for all HTTP client applications are over-
lapping at 100%, obscuring most of them. This includes local and remote clients attempting
both 1KB and 1MB HTTP transfers. The simpler TCP clients manage to squeeze through
a few occasional transactions, with slightly less threat to remote clients (because they start
from a lower baseline) and under a less constrained bottleneck link (because fewer packets
are dropped). These differences are faint, with the threat above 99% of in all contexts, but
they do match our expectations. With a weaker attack and reduced threat we would expect
to see the same differences magnified.

cases, and the TCP Setup client is reduced to less than 1% of its typical performance, with

a slightly lower threat faced by remote clients (because their baseline is lower) and when the

bottleneck is wider.

Finally we evaluate the efficacy of SYN Padding against both “smart” (padded) and

“dumb” (unpadded) floods. We cannot hope to enforce particular behavior from attackers,

only to incentivize it. We assume malicious actors will use any means available to disrupt

communication as significantly as possible, without regard for standards or expectations.

As such, attackers are free to choose whether to participate in the mitigation and pad their

131

packets, or to send unpadded floods as usual. While we might expect them to prefer non-

participation, failing to comply allows verifiers to drop all attack traffic early, whereas padded

floods will still succeed in reaching their destination but at a reduced volume.

Results are depicted in Figures 6.13 (smart) and 6.14 (dumb). For smart floods we expect

to see SYN Padding improve client QoS, because attackers are sending fewer, longer packets

(as shown in §6.3.1). Indeed, we observe near 100% efficacy for clients local to the server,

but near 0% for remote clients. In other words, the mitigation succeeds in reducing the

attack volume enough to protect clients with very low latency, but the attack’s threat is

so severe that remote clients simply cannot compete with attackers. If the padding length

were increased further and/or the flood rate were decreased, we would expect to see positive

efficacy for remote clients as well. The location of the verifier process does not have a

significant bearing on these results, as the padded attack packets will all pass verification

regardless of location. In a smart flood, the mitigation’s primary goal is already achieved

the moment attack traffic is generated.

Dumb floods exhibit very similar trends, with one notable exception: when the verifier

is located at the network edge, we achieve 100% efficacy for remote clients as well as for

local ones. In this scenario the verifier is able to drop the entire flood at its first hop,

sparing the rest of the network from congestion. This clearly illustrates the importance of

verifier location, as well as the benefits of moving the verifier away from bottlenecks near

the server and out towards attackers. It also demonstrates that attackers are incentivized to

comply with the mitigation and pad their attack packets, since that allows them to realize

the greatest damage, but either way SYN Padding succeeds in fully nullifying the attack’s

threat to local clients.

132

Figure 6.13: This figure shows efficacy of SYN Padding against a smart (padded) SYN
Flood as a percentage of the threat mitigated. The left-hand column shows results for
local clients (all near 100%) and the right-hand shows results for remote clients (all near
0%). Different rows show different verifier locations, though we do not observe a significant
difference between them in this context. Bottleneck link capacity is shown on the x-axis but
also makes no significant difference here. For local clients the attack is weak enough that
we’re able to fully mitigate the threat, yet for remote clients it is so strong that they can
barely complete a single transaction. An extra network hop and a couple of milliseconds of
extra latency makes an extraordinary difference.

133

One might assume a dumb flood is unrealistic in this context, since non-padded attack

packets are guaranteed to be dropped as soon as they reach a verifier (unlike in SYN PoW

where the dumb attacker will occasionally get lucky and stumble on a high-value hash).

However, if we assume the primary resource bottleneck in the network relates to receiving

and forwarding packets, then a flood of many small non-compliant packets could still be more

damaging than one of larger standard packets. Even if the bad packets can be consistently

detected and dropped, they still consume valuable resources en-route to the verifier. This is

clearly evidenced by the poor efficacy for remote clients that we observe when the verifier is

located at the server or firewall – it is still able to drop the entire flood, but not until after

legitimate packets are dropped due to congestion on the bottleneck link.

Note that SYN Cookies also exhibit near 100% efficacy for local clients and near 0% for

remote ones. However, unlike SYN Padding (and our general TIPs approach), SYN Cookies

can only be deployed at the server itself – there is no flexibility to offload them to a firewall

or edge router. This means that by the time attack traffic reaches the point at which SYN

Cookies take effect, it has already transited (and likely congested) any bottleneck links on

its path. This highlights a crucial advantage of our approach: that it enables much earlier

drops of malicious traffic, potentially as early as the first hop. Combining the two mitigations

produces no notable synergies (positive or negative), with performance tracking closely to

that of SYN Padding alone. Adding SYN Cookies does not improve performance beyond

the equal or superior efficacy achieved by SYN Padding, nor does either mitigation detract

from the other.

In summary, we find SYN Padding has negligible overhead from the client perspective,

and that it provides extremely high efficacy for certain clients, primarily those close to

134

Figure 6.14: This figure shows efficacy of SYN Padding against a dumb (unpadded) SYN
Flood as a percentage of the threat mitigated. We also compare against SYN Cookies,
and test the two mitigations simultaneously. The left-hand column shows results for local
clients (all near 100%) and the right-hand shows results for remote clients, where we see an
interesting divergence from the smart attack in Figure 6.13. Efficacy is again near zero when
the verifier is deployed at the server or its first-hop firewall router (r0), but looking at the
middle row we see it jump up to 100% when the verifier is deployed at the edge routers (r1-
r3). In this case the verifiers are able to drop the entire flood one hop away from its source,
before it is able to exhaust critical network resources. This clearly illustrates the importance
of verifier location, and the value of moving verification away from targeted devices towards
the attack source. Again we see that client location is the single most important factor
however, even obscuring effects of constraining the bottleneck link down to 50Mbps – even
that weakened attack is sufficient to take remote clients offline. Note that we only show
data for SYN Cookies alone when the verifier is located at the server (top row) since they
cannot be implemented elsewhere. Performance of the two mitigations combined is at least
equivalent to that of SYN Padding alone, and for remote clients with verification at edge
routers SYN Padding vastly outperforms SYN Cookies.

135

the server. When verifiers are pushed to the network edge, near the attack source, efficacy

increases for remote clients as well, in some cases providing 100% efficacy where SYN Cookies

provide near 0%.

6.4 SYN PoW

We now present the evaluation of our SYN PoW mitigation, defined in Section §4.2.3. Fol-

lowing the same structure as our analysis of SYN Padding above, we first explore the miti-

gation’s objective ability to reduce the volume of a SYN flood in Section §6.4.1, followed by

its subjective overhead and efficacy from the client perspective in Section §6.4.2.

6.4.1 Traffic Rate/Volume Reduction

We begin our analysis of SYN PoW by measuring the amount by which it is able to reduce

the volume of traffic produced by a single attacker. It is important to observe that the

feature we are varying on the x-axis here is the average number of iterations of the hash

function, rather than the bottleneck bandwidth as in our similar analysis of SYN Padding

above. This represents the burden being put onto the CPU capacity rather than the network

bandwidth capacity. This burden is per-packet rather than per-bit.

Again, these experiments are performed on a subset of the topology depicted in Figure

6.1. For each set of parameters tested, a 30 second SYN flood is launched from node a0 with

a destination of node s0. The SYN PoW verifier is deployed on the ingress side of node r0’s

network interfaces, with varying proof thresholds. Node s0 records the average attack rate

in bits per second and the average attack volume in packets per second, using the tcpstat

136

utility. This tool outputs one data point for every 5 second window – we exclude the first

and last data points for each trial as their windows include time before the attack starts and

after it ends. We then average results from the middle 20 seconds which represent the real

steady-state nature of the attack.

Results are shown in Figure 6.15. We first measure the maximum attack rate a0 is able

to produce, with no verifier running and no proof being performed. It achieves a steady-

state attack rate of 164.1 Mbps (446.0 Kpps), enough to pose a significant threat to many

real-world systems. We next deploy the verifier at node r0, sequentially testing values of

𝑘 ∈ {8, 32, 64, 128, 256}, but still without any proof-of-work being performed at the attacker.

In these “dumb” floods, only 1
𝑘

of all attack packets generated will have sufficient hash values,

thereby allowing the verifier to drop the remaining 𝑘−1
𝑘

. The dashed black line in Figure 6.15

indicates the expected attack rate, assuming hash values are truly random and the verifier

performs perfectly, defined by the function 𝑦 = 𝑚𝑎𝑥(𝑦)
𝑥

. Our experimental results match this

theory precisely, as is plainly visible in the overlap between the blue and dashed-black lines.

We also provide the raw data in Table 6.2, including a comparison of attack rate and volume

along with the expected and actual percent reductions in each.

With the highest 𝑘 value measured of 256, we succeed in reducing the attack to just

0.38% of its original rate, from 164.1 Mbps (445.97 Kpps) down to just 0.63 Mbps (1.71

Kpps). We have every reason to expect that even higher proof thresholds would continue

to follow the theoretical model and produce even smaller attacks. There are diminishing

returns to increasing 𝑘 however, as clearly illustrated by the sharp elbow in Figure 6.15.

There are also increasing costs to legitimate clients, as higher 𝑘 values add more latency to

their connection setup.

137

Figure 6.15: The rate-limiting effect of our SYN PoW mitigation against a single volumetric
SYN flooder, based on the expected number of hash iterations per packet, 𝑘. We compare
“smart” floods in which the attacker performs the proof against traditional dumb floods
in which they send SYNs as quickly as possible. The dashed line represents the equation
𝑦 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑡𝑡𝑎𝑐𝑘𝑅𝑎𝑡𝑒

𝑘
, the optimal rate reduction we can expect to achieve against a dumb

flood in which 𝑘−1
𝑘

of attack packets are dropped. We use a dual y-axis to indicate both the
attack’s bit-rate and its packet-rate, which are directly proportional to one another due to
the fixed size of attack packets.

138

Rate (Mbps) Volume (Kpps) % of Maximum Rate
k Theory Real Theory Real Theory Real Difference

8 20.51 19.53 55.75 53.07 12.5 11.90 0.60
32 5.13 5.05 13.94 13.72 3.13 3.08 0.05
64 2.56 2.55 6.97 6.93 1.56 1.55 0.01
128 1.28 1.22 3.48 3.31 0.78 0.74 0.04
256 0.64 0.63 1.74 1.71 0.39 0.38 0.01

Table 6.2: A comparison of our experimental results with the theoretical model for SYN
PoW’s ability to reduce the rate/volume of “dumb” SYN floods. As expected, the verifier is
able to drop almost exactly 𝑘−1

𝑘
of all attack packets. The rightmost column group indicates

the mitigated attack rate as a percentage of the maximum (unmitigated) attack rate of 164.1
Mbps. We succeed in reducing the attack to a small fraction of its original volume, with
efficacy that matches expectation precisely.

While SYN PoW is clearly extremely effective at reducing the threat of traditional SYN

Flooding attacks, we must also consider a “smart” attacker that attempts to perform the

proof-of-work operation honestly for each of its SYNs in order to get past the verifier. We

repeat the same procedures as for the “dumb” floods, this time with the SYN PoW prover

installed on node a0 while it launches the attack, using the same 𝑘 value as the verifier to

ensure all generated packets are accepted. These results are shown with the orange lines in

Figure 6.15. We see that smart attackers do pose a slightly greater threat than dumb ones,

but the added burden of computing proofs is still highly effective at rate-limiting them. In

the best case with 𝑘 = 256, we succeed in reducing the attack rate to 11.13 Mbps (30.26

Kpps), which is just 6.78% of the attacker’s normal capability. Even with the trivially low

threshold of 𝑘 = 8 the smart attack is reduced to 72.06 Mpbs (195.83 Kpps), less than half

its original size.

Next we restrict the attacker’s packet generation process to use only 10% of the system’s

available CPU resources using the cpulimit utility. Results are presented in Figure 6.16.

With no mitigation in place this CPU throttling reduces the maximum attack rate to 17.16

139

Figure 6.16: This figure mirrors Figure 6.15, but with the attacker’s packet generation process
restricted to 10% of its available CPU resources. The result shows almost identical trends
at 1

10

𝑡ℎ scale, indicating that our attacker was already CPU-bound, and that the SYN-PoW
mitigation scales well with changes in attacker resources. It doesn’t matter how severe the
attacker’s CPU bottleneck is, only that it is their primary bottleneck. We again succeed in
dropping almost exactly 𝑘−1

𝑘
of all packets in the “dumb” SYN floods, and up to 93.5% of

packets in “smart” floods (when 𝑘 = 256).

Mbps (46.64 Kpps), which is 10.46% of the maximum rate attainable when CPU is unre-

stricted. This indicates that our attacker was already CPU-bound, as expected. SYN PoW

remains effective at restricting the flood further however, with a nearly identical trend as in

Figure 6.15 for both dumb and smart SYN floods. Against dumb floods we again succeed in

dropping almost exactly 𝑘−1
𝑘

packets for all thresholds tested, as illustrated by the overlap of

the blue and dashed-black lines. With the maximum threshold tested of 𝑘 = 256 the flood

drops to just 1.12 Mbps (3.03 Kpps) – 6.5% of the CPU-limited maximum rate.

140

6.4.2 Client Overhead and QoS Impact

Our SYN PoW mitigation is clearly effective at reducing the volume of SYN floods, whether

attackers attempt to perform proofs or not. This is encouraging as we generally expect the

threat posed by volumetric DoS attacks to scale with their size, but it is not yet sufficient

to recommend widespread deployment. We must also evaluate how much overhead legiti-

mate clients incur in performing proofs, and what the mitigation’s actual net impact is on

application-layer QoS.

To that end we conduct experiments on the full topology shown in Figure 6.1. We measure

two variants of SYN PoW, with k=8 and k=64. We also compare against the special k=0

case in which no proofs are performed or validated, in order to measure the overhead incurred

by simply loading an eBPF program. We label this as the “eBPF No-Op” mitigation. Again,

we also test SYN Cookies (discussed in §3.2) as a point of comparison.5 We first launch the

flood from just the four attackers closest to the server, a0-a3, and then with the full set of

eight to compare attacks of different strengths. We also restrict attackers with the cpulimit

utility as discussed above, testing limits of 100, 50, 10, 5, and 1 percent of available CPU.

For each version of the SYN PoW mitigation tested, we measure both “smart” and “dumb”

flood types; in smart floods attackers compute proofs for each packet and in dumb floods
5Unfortunately we were unable to test the effects of SYN PoW and SYN Cookies simultaneously. There is

no inherent conflict between the two in terms of design, but there does appear to be one between the specific
implementations we use. Our eBPF-based SYN PoW implementation alters the SYN’s Acknowledgement
Number field to encode its nonce, while SYN Cookies encode information in the SYN-ACK and ACK, based
on contents of the SYN. The two should be fully isolated from one another, but when attempting to combine
them our clients fail to establish any connections. We have yet to identify the precise cause of this conflict,
but hypothesize that SYN Cookies are assuming a value of zero for the Acknowledgement Number field in
one part of their operation and using the actual value (which is usually zero) in another, causing a mismatch
that leads to the rejection of legitimate client ACKs. We remain optimistic that the two mitigations can
co-exist, and note that this ambiguous behavior of SYN Cookies is emblematic of the problems that can
arise when protocol modifications are deployed without sufficient standardization.

141

Figure 6.17: Baseline performance across client types, without the presence of an attack
or mitigation. Local clients are positioned on the near-side of the bottleneck link to the
server, remote clients are positioned on the far side. As expected, we observe significantly
better performance for local clients, and for simpler transactions that require fewer packet
exchanges to complete.

they do not.

In all cases, we have the full set of twelve clients attempt to communicate with the server,

using the same three client applications tested with SYN Cookies and SYN Padding above

(TCP Setup, HTTP 1KB, and HTTP 1MB). Figure 6.17 illustrates how baseline performance

differs across these applications, and how it depends on client location. As expected, results

are nearly identical to those depicted in Figures 6.3 and 6.10, since baseline performance is in

no way mitigation-specific. Again we see local clients outperform remote ones, and simpler

applications outperform those that require more round trips.

Next we evaluate the overhead of each mitigation on client performance outside periods

142

Figure 6.18: Overhead of our SYN PoW mitigation compared with SYN-Cookies and our
eBPF No-Op program. In all cases mean overhead is extremely near zero, with 95𝑡ℎ percentile
confidence interval extending to +/- 5%. Bars are so narrow that the colors are difficult to
see, but their left-to-right order matches the top-to-bottom order in the legend.

of attack. Figure 6.18 shows that this overhead is similarly low for all four mitigations,

with no discernible difference between the overhead of a No-Op eBPF program and one that

actually performs a proof, nor between the k=8 and k=64 variants. We again observe some

outliers of both high overhead and extreme negative overhead (indicating that the mitigation

somehow improves baseline performance), both of which can again be accounted for by the

variance observed in the baseline. Remote clients experience significantly higher variance

in both baseline and overhead than local ones do. In all cases the mean is near zero and

the confidence interval extends equally above and below the x-axis, indicating that overhead

for all four mitigations is truly negligible from the application-layer perspective, relative to

natural fluctuations in baseline performance.

143

Figure 6.19: The threat experienced by clients during the attack as a percentage of the
Baseline. We see that the threat is absolute for HTTP clients with all lines overlapping at
100%, and is consistently above 98% for the simpler TCP Setup.

Introducing the attack, first with four devices and then eight, we see that the threat is

again near-absolute. Figure 6.19 depicts this threat as a percentage of the baseline perfor-

mance. For the two HTTP clients the threat is a full 100%, and the TCP Setup client’s

performance is reduced by over 98% in all cases. Local clients still slightly outpace remote

ones, but due to their large advantage in baseline performance they also perceive a slightly

greater threat.

Finally we evaluate the efficacy of our mitigations against the flood. Figure 6.20 depicts

efficacy for each as a percentage of the baseline, split across local/remote clients, smart/dumb

floods, and 4/8 attackers. Starting with the standard “dumb” flood, we again we see a large

rift between local and remote clients, with 80-100% of the threat successfully mitigated for

all local clients and remote clients struggling near 0% efficacy for all but the weakest floods.

Interestingly the performance of our our SYN PoW mitigations tracks very closely to that

of SYN Cookies regardless of the attack’s strength. If attackers attempt the proofs and

send “smart” floods, clients observe even better efficacy (though as we will see this does

144

not necessarily mean attackers are incentivized to continue sending dumb floods). Even the

remote clients observe near 100% efficacy in the 4-attacker smart flood, as well as significant

improvements with 8 CPU-constrained attackers. Here we see the clearest difference between

the k=8 and k=64 variants, with k=64 creating a drastic reduction in attack rate that restores

client QoS to 100% of the baseline in all cases except remote clients with 8 attackers. SYN

Cookies on the other hand never exceed 30% efficacy for remote clients (as seen in the 4-

attacker dumb flood graph). Note that our experiments included additional variables (most

notably the client application and verifier location), but the narrow error bands (indicating

the 95th percent confidence interval) illustrate that these have little impact on the results.

Attack volume and client location are by far the dominating factors in determining mitigation

efficacy.

In summary, our SYN PoW mitigations exhibit negligible overhead and consistently out-

perform SYN Cookies at mitigating volumetric SYN Floods, with the higher-difficulty k=64

variant offering marginally better protection than k=8. These results make a compelling

case for widespread deployment of SYN PoW on the Internet, though we emphasize that

further experimentation and standardization through the IETF or a similar body must be

performed first.

145

Figure 6.20: The Efficacy of our SYN PoW mitigations, compared with that of SYN Cookies,
for local and remote clients across varying flood types. Local clients (in subnets A and B)
achieve extremely high efficacy in all cases, often nearing 100% and only dipping to near
80% when faced with the full strength of a dumb flood from 8 attackers. For remote clients
the threat of the dumb flood is simply too severe to salvage any performance except when
attackers are limited to below 50% of their normal CPU resources. With the smart flood
however, they acheive near 100% efficacy against 4 attackers. In the 8-attacker smart flood
we see the most significant impact of attacker CPU limitations and the clearest difference
between 𝑘 values. As the CPU limit decreases, efficacy moves from 0% up to 50% for 𝑘 = 8
and all the way up to 100% for 𝑘 = 64, verifying that higher proof thresholds can yield
higher efficacy. Note that with sufficiently strong attack we would eventually see efficacy
drop to zero for local clients, and with weaker attacks we would see it increase to 100% for
remote clients. Finding the precise effective range for either group would require extensive
trial and error. We can say that in this context the mitigations are highly effective for local
clients and occasionally effective for remote ones.

146

Chapter 7

Discussion

In this chapter we discuss potential future work in this domain and extensions to our con-

tributions, as well as limitations of this work and other miscellaneous considerations. In

Section §7.1 we discuss how the TIPs mitigation approach (described in Chapter §4) might

be implemented in protocols other than TCP. Considerations for supporting both our TCP

implementations and others in IPv6 are presented in Section §7.2. Section 7.3 presents

Hash-Sorted Queuing, an extension to our SYN-PoW mitigation (defined in §4.2.3) which

provides multi-tiered service based on the amount of work clients perform rather than veri-

fiers making a binary accept/drop decision. In Section §7.4 we explore how our measurement

framework (presented in Chapter §5) can be used to compare the DoS resilience of disparate

network protocols and internet architectures. Section §7.5 discusses the limitations of that

framework and additional metrics that may be useful. Section §7.6 discusses challenges

of generating consistent high-volume floods for experimentation, and Section §7.7 outlines

our data collection, storage, and analysis pipeline. Finally, we discuss additional consider-

ations for deploying the novel mitigations we’ve implemented in Section §7.8, before briefly

147

summarizing in §7.9.

7.1 Non-TCP Implementations

We chose to implement the first proofs-of-concept for our TIPs approach to mitigation in

TCP because TCP SYN floods pose a severe and immediate threat. They are far from

the only threat however, and the general concept of bootstrapping trust in a single packet

via provable resource expenditure is one that can and should be applied to other protocols.

There are far too many potential avenues for deployment to enumerate, but we present likely

candidates for both padding- and PoW-based mitigations below.

7.1.1 Padding

As shown in §6.3, packet padding can provide a valuable tool for forcing bandwidth-constrained

attackers to send fewer, longer packets. Assuming the predominant overhead of an attack is

per-packet rather than per-bit, this simple intervention can have a drastic impact on perfor-

mance. A similar implementation in UDP may also be valuable, as that represents one of the

two largest vectors for short-packet volumetric attacks alongside SYN floods. However, the

UDP header lacks the option fields we use for padding in TCP, meaning we would need some

form of application-layer support to ensure that padding in the data payload is properly

ignored by the receiver. UDP also lacks TCP’s flags to distinguish special packet types –

SYNs represent only a small fraction of all TCP packets sent by ordinary clients so padding

them adds little overhead, but in UDP the only option is to pad all packets. Deployment in

QUIC may be valuable as well – it has been rapidly gaining market share at the transport

148

layer and its initial packets resemble TCP SYNs, most notably in their rarity of use and ease

of identification. QUIC does not presently present a significant DoS threat, but we strongly

believe in the importance of proactive rather than reactive approaches to mitigation. While

padding can be effective at the transport layer, it is likely better positioned at the network

layer. This is because the per-packet resources that short packets consume primarily exist

at that layer and below. The real goal of packet padding is to protect the network’s most

essential functionality of forwarding packets, regardless of their contents.

Determining the optimal minimum packet size, assuming we are unburdened by restric-

tions of existing standards, is a challenging task. Forcing attackers to send longer packets

can reduce the damage caused by volumetric floods, but forcing ordinary clients to pad their

packets would cause a consistent reduction in network efficiency. However, there is an argu-

ment to be made that any “legitimate” clients which send extremely short packets are already

operating in a way that reduces efficiency. Naively, we expect that including more data in

each packet means fewer forwarding resources are required to deliver the same amount of

information, though the reality is a bit more complex. Larger packets are more expensive

to re-transmit, making them inefficient on networks with a high loss rate. Additionally, any

given device has only a finite amount of data to send at any given time – increasing min-

imum packet lengths above the average packet length sent by legitimate clients would be

guaranteed to impose overhead.

The ideal packet size therefore depends on some combination of attackers’ outgoing band-

width, average packet sizes, and typical Internet-wide loss rates. Unfortunately we are un-

aware of sufficient data sources for determining any of these factors, let alone all three. While

we strongly suspect the current minimum packet size of 20 bytes in IPv4 is inefficiently small,

149

we cannot recommend a specific alternative without further research. We also acknowledge

that altering such a key aspect of such a ubiquitous protocol is a near impossibility on the

modern Internet, and urge those developing future internet architectures to consider the

potential DoS implications of packet length in their designs.

7.1.2 Proof-of-Work

As discussed in earlier chapters, our Proof-of-Work approach to DoS mitigation is far more

robust than packet padding, and we expect it to be applicable across a wide range of proto-

cols. The two key requirements are that attackers be CPU bound (which we assume to be

the norm), and that there exists some natural asymmetry between attackers and legitimate

clients. For SYN PoW the primary asymmetry we exploit is that attackers send SYN pack-

ets in much higher volumes than legitimate clients do, meaning attackers take the brunt of

the cost added by the mitigation. We expect similar imbalances exist within other packet

types used in volumetric attacks. In fact, that imbalance is largely what defines a volumetric

attack, when devices send more than their fair share of traffic.

In the context of short-packet UDP floods (which are effectively IP floods), the primary

imbalance is packet length. Attackers send very short packets far more often than normal

clients do – indeed, a PoW could be included in UDP (or IP) as an alternative to padding.

By setting proof thresholds inversely proportional to packet length, shorter packets would

require more CPU resources to generate than longer ones. This sort of hybrid approach

could offer benefits of both padding and PoW, at the cost of additional complexity. It

would protect receivers’ bandwidth resources from CPU-bound attackers, but would require

150

a combination of both their verifiers as well – we would expect to see additive effects in

efficacy, but also in overhead. There is no clear place to add a nonce to the UDP header,

and adding one to the payload would require higher-layer support as with padding. There

are no convenient fields available in the IPv4 or IPv6 headers, but a PoW nonce could be

added as a new IPv4 option or a new IPv6 extension header. In designing new protocols a

dedicated nonce field could easily be included. It may also be possible to combine the PoW

hash with a network- or transport-layer checksum in order to reduce overhead. The same

hash function may not be optimal for both however, and any benefits to efficacy would not

justify a compromise in security.

PoW-based mitigation could also be useful in HTTP(S), (S)FTP, QUIC, or other data

transfer applications, with difficulty set corresponding to the value/scarcity of the resource

being requested. Files that are larger, replicated across fewer devices, or located farther from

the requester could require higher-value proofs than small, common, or close files. In this

case the assumed asymmetry is that ordinary clients only request such high-value files on

rare occasion. If a file is widely replicated that is generally because it is commonly requested

by clients, and if a real user regularly needs the same very large file they are generally better

off downloading it once and keeping a local copy. Devices that repeatedly behave outside

these norms are likely to be malicious, but we don’t want to risk over-penalizing devices

that only occasionally send odd/challenging requests. As with padding (and with SYN

PoW), there is a delicate balance to strike in determining how much work provers should be

required to put in. Appropriate thresholds should be determined through experimentation,

following the model provided in Chapters §5 and §6. For comparison, existing application-

layer mitigations may add multiple seconds of latency or even require human interaction (as

151

discussed in §3.2.3) – we would expect to see high efficacy from PoW-based solutions with

overhead on the order of a millisecond per packet or less.

7.2 IPv6 Support

One immediate next step for this work is to provide IPv6 support in our implementations

of SYN Padding and SYN PoW. This will add a small amount of complexity to the verifier

programs, since IPv4 and IPv6 headers require sepearte code to parse, but we do not expect

this will add significant overhead. We do not anticipate any other hurdles to IPv6 deployment

of these mitigations.

It’s worth noting that in IPv6 a single device can legitimately own and use a large

number of addresses simultaneously, since address space is so abundant. This means IPv6-

based flooders may be even more difficult to detect than those in IPv4, further motivating

implementation of our mitigations in that architecture.

7.3 Hash-Sorted Queuing

One possible extension to PoW-based mitigation is to replace the binary accept/drop thresh-

old with a mechanism we call Hash-Sorted Queuing (HSQ). As the name suggests, packets

are instead sorted into different queues based on their hash value. Packets bearing extremely

high-valued proofs may be rewarded with priority service while lower values incur more delay,

and only the lowest-valued packets will be dropped when necessary. Figure 7.1 illustrates

this concept.

152

Hash
Function

Ingress Link

Standard
Queue

0 - θ

Priority
Queue

Drop

θ - 230 230 - 232

Figure 7.1: An illustration of our proposed Hash-Sorted Queuing mechanism. The verifier
computes the hash value of each incoming packet and assigns them to different queues
accordingly. Packets with high-valued hashes are given priority while those with the lowest
values may be dropped. The verifier can wait until the standard queue becomes full to begin
dropping, or it may choose to take a more proactive approach and drop any packet with
a hash value below the threshold 𝜃 regardless of queue length. During periods of extreme
demand, some packets may need to be dropped before they reach the verifier. We assume
the hash output is 32 bits in length, allowing for hash values ranging from 0− 232.

As with ECC (described in §4.2.3.5), clients could use AIMD or a similar algorithm to

determine how much effort they should expend on proof generation in order to receive ad-

equate QoS, or servers could announce thresholds through the DNS. Again, those methods

add complexity, but removing the binary accept/drop decision also removes some drawbacks

of variable-threshold approaches because the consequences of guessing the threshold incor-

rectly are less severe. If a client guesses low and performs less work than expected, their

packet will be delayed rather than dropped (unless congestion is extremely high or their proof

value is extremely low). If they guess high and perform extra work, they will be rewarded

153

with superior service quality rather than that work being wasted.

Ultimately we envision this creating a sort of free market for packets, in which devices

eventually reach an equilibrium at which senders “pay” just enough to receive whatever

quality of service they desire. If a service provider sets unreasonably high thresholds, clients

would be incentivized to seek an alternative, sparking competition. In theory this could even

provide a mechanism for enforcing the peering agreements on which BGP relies – rather than

policing traffic volumes from neighboring ASes, border gateways could simply set different

proof thresholds for each AS in a way that prioritizes traffic to/from their higher-paying

customers.

There is one major hurdle facing HSQ that is shared by all proposals for providing differ-

entiated services: establishing consensus on what constitutes “good” service. As discussed in

§3.3, different applications can have drastically different resource requirements. Clients seek-

ing to minimize latency want their packets sent as quickly as possible, while those seeking to

minimize loss may prefer their packets be held temporarily if that means they will be sent

over a more reliable link. If adding PoWs to an application-layer protocol it may be possible

for the verifier to infer the prover’s desire, assuming all users of that application have sim-

ilar requirements. If implemented at lower layers, verifiers should not examine higher-layer

headers or payloads to make a similar inference, as that sort of deep packet inspection can

compromise network neutrality. There may be value in adding proofs at multiple layers,

but each one should be handled purely within its own layer. Therefore, low-level verifiers

should prioritize every packet they receive uniformly (in most cases by minimizing latency).

Alternatively, a few additional bits could be added to each packet, signifying the sender’s

desired prioritization method from a standard list of options.

154

7.4 Protocol and Architecture Comparison

The original impetus for this research was an attempt to evaluate the DoS-resilience of

proposed future internet architectures [84], in comparison against one another and against

the current TCP/IP model. In starting down that path we quickly realized that we lacked

any robust method for quantifying DoS-resilience, including that of the current architecture.

This ultimately led to development of the measurement framework presented in Chapter §5,

which is designed to facilitate exactly this sort of analysis. Our metrics and methodologies

can be used to compare IPv4 against IPv6, and against a novel architectures like Named

Data Networking (NDN) [85], [86] or MobilityFirst [87]. They can also be used to compare

protocols at any layer, allowing us to answer: whether QUIC is really a suitable replacement

for TCP; how DNS over HTTPS (DoH) compares to traditional DNS over UDP; or whether

a given application provides better end-user QoS when running on TCP or UDP. We can also

compare different implementations of the same protocol, to establish which operating system

is most efficient, or to tune parameters of a complex mitigation towards optimal values.

Even with this framework, DoS-resilience (and conversely, DoS-vulnerability) is a highly

subjective trait. It depends on particulars of the attack launched, the services under attack,

the relative locations of participants, the software and hardware they use, etc.. We can state

whether one architecture, protocol, or implementation is superior to any other, but only

within a specific context. We can also begin to look at how altering that context alters the

comparison – perhaps IPv6 outperforms IPv4 for certain applications, but only when the

RTT or hop-count is below some threshold. Through further experimentation we hope to

155

identify common trends in these cross-context measurements that will offer deeper insights

into why some architectures and protocols are more resilient than others, which can then

inform more objectively DoS-resilient designs in the future.

7.5 Additional Metrics

This section discusses limitations of our measurement framework, defined in §5, and addi-

tional measurements that may be beneficial. We discuss economic costs (§7.5.1), time-series

analysis (§7.5.2), and estimations of attack probability (§7.5.3).

7.5.1 Economic Cost Modeling

In §3.2.2 we mentioned that mitigating volumetric DoS attacks via over-provisioning, while

effective, imposes high monetary costs. Purchasing more devices than are needed to handle

legitimate demand is wastefully expensive. While our measurement framework is primarily

designed to optimize performance, it can be adapted to evaluate this economic overhead as

well. A simple mitigation in this case is to increase the number of servers in our network

from one to two. The cost is plainly obvious: it is the price of acquiring, deploying, and

maintaining that second server. There may still be some marginal performance overhead as

well, for example if the new server is positioned farther away from clients or is equipped with

different hardware resources than the first. Even the seemingly simple act of load balancing

traffic between two servers adds some overhead to the system, and potentially the addition

of yet another device on which to perform that load balancing (though it may be done in

advance via the DNS). In measuring the efficacy of adding a second server, it is useful to test

156

how many legitimate clients can be supported per device, as well as how strong of a flooding

attack they can withstand.

Of course this is only one piece of a much more complex equation – service providers

that rely on over-provisioning must also consider the potential costs of not acquiring excess

capacity. If they start dropping legitimate packets, either as the result of a volumetric attack

or a legitimate spike in demand, their customers will be upset and they may lose business.

For certain mitigations, latency is so severe that it imposes measurable economic costs. As

discussed in §3.2.3, the average user takes 32 seconds to solve (re)CAPTCHA puzzles, which

totals an estimated 500 years per day of wasted time. If we value that time at the meager

United States federal minimum wage of $7.25/hr, it represents $11.59 billion per year worth

of lost productivity.

Finding the right balance between efficacy and overhead can be an extremely challenging

task, and often it is better to be safe than sorry – to guarantee service persists during

extreme floods, even if that means lower performance and/or higher costs during normal

operation. However, we believe the costs of existing mitigations must be examined more

closely. Anecdotally, we have heard multiple colleagues in the field express a belief that

CDN-based mitigation services have “solved” the problem of volumetric DoS attacks, when

in reality they are converting performance costs to economic ones. This is a tremendously

valuable ability to have in our arsenal of defense strategies, but it is not infinitely valuable

– sometimes the best option may be for service to fail (temporarily). Without a complete

understanding of what DoS mitigations cost, we cannot make informed decisions about when

and where they are worth deploying.

157

7.5.2 Time-Series Analysis

Our metrics all aggregate data from multiple transactions, over extended periods of time. We

have found this approach necessary in producing useful data visualizations – our experiments

involve a large number of variables, and the more we aggregate our data the more variables

can be displayed simultaneously. However, this aggregation may also hide interesting features

of the data we collect. Prior work in measuring DoS attacks and mitigations has made

frequent use of time-series analysis, wherein some performance metric is plotted on the y-

axis of a scatter plot or line graph, with time on the x-axis. This allows us to visualize

changes in performance over time, most notably the ramp-up and ramp-down periods at

the start and end of the attack. How long does it take between the time the attack starts

and the time QoS reaches some new, reduced steady state? How long between the end of

the attack and a return to the original steady state? Are those two steady states actually

very steady, or is there a high variance in QoS (with or without an attack or mitigation)?

Time-series plots can be very helpful in answering these questions. In our experiments we’ve

found systems may take upwards of 30 seconds to return to normal after a flood ends, as

the TCP server continues re-transmitting responses to attack packets. The ramp-up phase

at the start of an attack is near-instantaneous however. Variance during the steady state

depends largely on the client application and features of the network topology. In summary,

time-series analysis can still provide a valuable supplement to the metrics we have presented,

though it makes multi-variate cross-context analysis difficult.

158

7.5.3 Estimating Attack Probabilities

Some of the metrics presented in §5.5 require information about what volume of attack a de-

vice expects to receive with what frequency. If high-volume attacks are common, then it may

be worth deploying a high-overhead mitigation if it’s able to provide high efficacy. If attacks

are rare, the mitigation’s efficacy becomes less valuable and its overhead is harder to justify.

Finding the right balance of efficacy and overhead is crucial to optimizing performance, yet

predicting attack patterns is a difficult task. To be clear, devices do not need to predict

if/when any specific attack event will occur, only the probability distribution of traffic vol-

umes they will receive over time. Still, we are unaware of any existing data sources that

could be used to make this determination in the general case, and while individual receivers

may be able to predict how much total traffic they will receive with reasonable accuracy,

determining what portion of that traffic belongs to an attack is a separate challenge – if

attack packets were easily identifiable they would simply be dropped. Until additional data

can be collected, network and device operators are forced to guess how often the mitigations

they deploy will actually be useful, and how often they are serving as dead weight. Fortu-

nately the mitigations we tested exhibit negligible overhead from the client’s perspective, so

deploying them is likely to have a net benefit.

7.6 Attack Traffic Generation

Accurately evaluating DoS mitigations requires us to generate DoS attacks – we flood devices

under our own control and measure how they perform. To test high-volume floods, we either

159

need a large number of devices (as in a real-world botnet), or a way to send large amounts

of traffic from a single device. Since resources in our testbed are limited, our only choice is

the latter. To that end we have developed a highly efficient packet generation script in the

C programming language. The fastest approach we have found is to allocate a single buffer

which is re-used for each packet in the flood. Before sending the next packet we generate a

new random source IP address (skipping private and reserved address blocks), and modify

only the bits in our packet buffer corresponding to that field. We then re-compute the

TCP and IP checksums and modify bits for those fields as well before sending the new

packet. This avoids any unnecessary copying between buffers, and we have found it can

produce consistently faster and more consistent floods than reading pre-generated packets

from memory.

Note that it is important that we are able to generate packets manually, with full control

over every field at every layer. DoS experimentation requires us to test corner cases, to check

whether a potential new attack vector could be damaging. This is cannot be done by simply

replaying packet captures of past real-world attack incidents, since some major threats have

yet to be realized.

Our flooding scripts are made available along with the rest of our research code at [3],

though we stress that they are to be used for research purposes only, never to launch attacks

against any real-world devices. We urge caution even to the most well-intentioned reader:

experiments should always be performed in a securely sandboxed environment. Even tar-

geting one’s own devices can cause harmful effects to intermediary nodes and recipients of

backscatter traffic, if proper precautions are not taken.

160

7.7 Data Analysis Pipeline

After running a suite of experiments we transfer the collected data from the DeterLab testbed

to CSAIL’s OpenStack cluster, where there are more abundant resources for storage and

analysis. Our data analysis pipeline is fully automated, including the processing of raw

data to extract our various metrics, and the generation of figures from those metrics. We

parse data in python, using Jupyter notebooks to enable automation, ensure consistency,

and foster reproducibility.

Processed data is stored in a PostgreSQL database using a custom schema we have

developed to mirror the DeterLab workflow. This is depicted in Figure 7.2, which was

generated automatically from our schema file by the service https://dbdiagram.io. This

schema provides the flexibility to add arbitrary new parameters to our experiments (by

storing them as JSON objects) while still enabling efficient queries. We generate figures

directly from database queries using the seaborn and matplotlib python libraries. Our

own prior work provides a more in-depth discussion on designing database systems for DoS

mitigation measurement research [88].

Development of these data processing tools required a significant amount of time and

effort, and while they lack the direct intellectual merit of this thesis’s primary contributions,

we hope others will find them useful in conducting experiments similar to ours (or in at-

tempting to repeat our work). These tools are provided along with the rest of our research

code at [3].

161

https://dbdiagram.io

7.8 Deployment Considerations

When discussing modifications to existing protocol standards, we must be mindful to design

mitigations that are not only technically sound but also practically feasible to deploy, from

the perspectives of economics and public policy. Ideally this requires approaches that can be

deployed incrementally. Protocol modifications may take years to standardize and potentially

decades to actually realize widespread deployment, so we cannot expect to make any sweeping

changes to the whole Internet architecture overnight.

A prime example is the transition from IPv4 to IPv6. In February 2011, ICANN an-

nounced the final allocation of IPv4 address space, describing the event as “major turning

point in the on-going development of the Internet,” yet acknowledging that "no one was

caught off guard," because "the Internet technical community [had] been planning for IPv4

depletion for some time." Indeed, the first version of the IPv6 standard was published over

16 years prior in December 1995 [89]. Yet global adoption remains below 50% to this day

[90].

To avoid such delays we should design mitigations that are incrementally deployable, able

to co-exist with legacy devices that have not yet implemented them, and straightforward to

deploy on a wide variety of hardware and software. We have striven to meet this standard

in the design of our proposed SYN Padding and SYN PoW mitigations, most notably by

implementing them as portable eBPF programs. Since eBPF allows for arbitrary packet

analysis and modification, we see this as a promising approach for deploying other mitigations

in the future. Meaningful change will not happen overnight on the Internet, but with careful

162

and clever design we can help it happen faster.

7.9 Summary

In summary, our immediate next steps to build on this work are to conduct further experi-

ments to fine-tune our SYN Padding and SYN Pow mitigations, and to provide IPv6 support

for them. Looking slightly longer-term we plan to develop in-kernel implementations of both

mitigations; to develop implementations of similar padding- and PoW-based approaches for

other protocols facing pressing DoS vulnerabilities; and to extend our PoW model to real-

ize the vision of Hash-Sorted Queuing in which individual packets directly “pay” (in CPU

cycles) for the services they solicit. We also plan to begin comparative analyses of potential

future internet architectures, and encourage others to do the same using our measurement

framework.

We discussed limitations of our metrics and methodologies, including how they might be

adapted to capture monetary costs in addition to changes in performance; how aggregating

over extended periods of time may hide some interesting features of the data we collect; and

why some of the metrics we define cannot reasonably be measured unless we are able to

obtain better data describing expected attack volumes.

Additionally, we describe the automated pipeline used to analyze our data; discuss gener-

ating large volumes of attack traffic in a research setting; and consider strategies for designing

mitigations that can be deployed easily and incrementally, in order to facilitate faster adop-

tion.

163

Figure 7.2: The database schema used to organize results of our experiments, designed to
meld the structure of our measurement framework with that of the DeterLab testbed on
which our experiments are conducted. Experimentation in DeterLab starts by creating a
revision: an abstract definition of a network topology. From that revision we can then
create a materialization: a manifestation of the topology on a specific set of hardware in
the testbed. Each materialization has some set of hosts, which may be a combination of
physical devices and virtual machines. Our measurement framework operates in units of
experiments, each of which includes a set of the four core measurements (UB, MB, UA,
and MA) described in §5.4. Typically we conduct multiple experiments in a single session,
systematically testing all possible permutations from a given set of parameters. Each exper-
iment results in a large number of data points, which are summarized into results.

164

Chapter 8

Conclusion

Volumetric Denial-of-Service attacks pose a severe and ever-growing threat to the Internet.

They exploit inherent insecurities in its architectural design: devices must handle traffic from

other devices with which they are unfamiliar, and generating a large volume of traffic is much

easier than receiving the same volume. Existing mitigations have significant costs, which are

predominantly borne by the very devices they aim to protect. This thesis has outlined a path

towards designing a fundamentally more DoS-resilient Internet, by increasing the costs of

flood generation and making it easier to detect and drop bad packets closer to their source.

We re-frame volumetric DoS mitigation as a performance optimization problem, wherein

the goal is to shift bottlenecks away from attack targets towards the network edge and onto

attackers themselves. We observe that significant asymmetries exist between attackers and

regular clients, which allow us to influence the behavior of attackers without needing to

identify them or their traffic directly. Making certain packets marginally more difficult to

generate can create a drastic reduction in flood volume with negligible overhead.

We show that simple packet padding can be an effective mitigation against certain at-

165

tacks, serving as verifiable proof that a sender has expended significant bandwidth resources.

Bandwidth-bound attackers that pad their packets will send fewer, longer packets per sec-

ond. In volumetric attacks, we assume that the benefits of receiving fewer packets outweigh

the costs of receiving longer ones. Attackers that choose to continue sending unpadded

floods can maintain their normal rate, but once their traffic reaches a verifier it can easily be

dropped. Our implementation of this concept in TCP, SYN Padding, was largely designed

as a toy example yet provides extremely high efficacy in certain contexts. While we do not

recommend deploying this mitigation as-is, it suggests a clear link between packet length and

DoS resilience. We believe that mandating a longer minimum packet length at the network

layer could provide valuable protection against high-volume short-packet floods.

Using a hash-based proof-of-work system provides an even more effective, flexible, and

scalable version of this concept. We expect the vast majority of attackers are CPU-bound,

and so requiring them to expend just a few extra CPU cycles per packet is an easy way to

reduce their flood volume. For regular clients this extra work amounts to small fraction of

a round-trip time and is unnoticeable at ordinary sending rates. Again, if attackers choose

not to participate and send packets without proofs, those packets can easily be dropped.

In this case verification is a bit more complex than checking the packet length, as verifiers

must compute one iteration of the hash function themselves, but it still has negligible im-

pact on client QoS. Proofs are also probabilistic, meaning non-participating attackers will

occasionally get lucky and appear as though they are participating, but a single attacker

may send hundreds of thousands of packets per second so this variance will quickly average

out. The system can easily be tuned to make the attacker’s job arbitrarily difficult, at the

expense of slight increases in client latency. Since attackers send orders of magnitude more

166

packets per second, they experience orders of magnitude more impact from the added dif-

ficulty. We have provided a standards-compliant design for SYN PoW, an implementation

of this concept designed to combat the ubiquitous TCP SYN flood, and implemented both

the prover and verifier as eBPF programs to maximize efficiency and portability. Further

experimentation, fine-tuning, and standardization will be required to prepare SYN PoW for

widespread deployment, but we believe it has the potential to radically transform the way

we approach volumetric DoS mitigation.

Both these mitigations, SYN Padding and SYN PoW, follow our general concept of

Trustworthy Independent Packets (TIPs) – they bootstrap trust between unfamiliar devices

in a single packet, without relying on prior state or additional communication. Crucially,

this allows the role of verification to be decoupled from the packet’s destination. It can

be performed at a nearby firewall to offload processing from a resource-constrained server,

or distributed across edge devices in order to detect and drop bad traffic (with insufficient

proofs) closer to its source. This gives us a crucial advantage over existing mitigations like

SYN Cookies, which require direct involvement from the packet’s destination and therefore

can only respond to attacks once significant resources have already been spent forwarding

the flood through the network. Moreover, SYN Cookies and most similar mitigations actively

respond to attack traffic, further increasing strain on the network and potentially harming

secondary targets with backscatter traffic. With TIPs, responses are sent only if verification

succeeds. Indeed, our experimental results clearly show that SYN Cookies steadily lose effi-

cacy as attack volume increases, and that using our TIPs approach with a verifier placed near

the attack source can overcome this to provide exceptional protection during an ordinarily

devastating flood.

167

To evaluate our proposed mitigations, we have defined a suite of metrics and a rigorous

experimental methodology. Controlling for both the separate and combined effects of an

attack and a mitigation on a system allows us to tease apart a mitigation’s efficacy from its

overhead, enabling more accurate assessment of its net utility. We show that small changes

in network topology or device behavior can lead to drastically different results, reinforcing

the importance of measuring mitigations across a wide variety of realistic contexts. This

measurement framework can be adapted to track arbitrary metrics – we rely primarily on

client-side application-layer indicators of performance, but we discuss how economic costs

can be measured as well. We can also compare the DoS-resilience of any two protocols,

architectures, implementations, topologies, etc. using this model, by simply framing a change

from one to the other as a mitigation. Our code and other data is made available to facilitate

further research in this domain [3].

In summary, we urge a closer analysis of the costs existing DoS mitigations impose,

and propose novel approaches based on packet padding and proof-of work which can help

redistribute those costs away from attack targets and towards their sources.

168

Bibliography

[1] C. Martinho and T. Strickx, Understanding How Facebook Disappeared from the
Internet, http://blog.cloudflare.com/october-2021-facebook-outage/, Oct. 2021.
(visited on 02/03/2022).

[2] S. Gibbs, “Google reinforces undersea cables after shark bites,” The Guardian, Aug.
2014, issn: 0261-3077. (visited on 07/21/2023).

[3] S. DeLaughter, Research Data for Doctoral Thesis: Redistributing the Costs of
Volumetric Denial-of-Service Mitigation, https://samd.is/phd. (visited on
08/28/2023).

[4] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics,
vol. 38, no. 8, pp. 114–117, Apr. 1965.

[5] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proceedings
of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[6] N. Woolf, “DDoS attack that disrupted internet was largest of its kind in history,
experts say,” The Guardian, Oct. 2016, issn: 0261-3077. (visited on 07/08/2022).

[7] D. Menscher, Identifying and protecting against the largest DDoS attacks | Google
Cloud Blog, https://cloud.google.com/blog/products/identity-security/identifying-
and-protecting-against-the-largest-ddos-attacks, Oct. 2020. (visited on 03/20/2023).

[8] A. Gutnikov, O. Kupreev, and Y. Shmelev, “DDoS Attacks in Q1 2022,” Kaspersky
Securelink, White Paper Q12022, 2022. (visited on 04/29/2022).

[9] Azure Network Security Team, 2022 in review: DDoS attack trends and insights,
https://www.microsoft.com/en-us/security/blog/2023/02/21/2022-in-review-ddos-
attack-trends-and-insights/, Feb. 2023. (visited on 03/19/2023).

[10] Cybersecurity and Infrastructure Security Agency (CISA), Federal Bureau of
Investigation (FBI), and Multi-State Information Sharing & Analysis Center
(MS-ISAC), Understanding and Responding to Distributed Denial of Service Attacks,
Oct. 2022. (visited on 07/19/2023).

[11] Cybersecurity and Infrastructure Security Agency (CISA), Capacity Enhancement
Guide: Additional DDoS Guidance for Federal Agencies, Oct. 2022. (visited on
07/19/2023).

[12] Common Criteria Recognition Arrangement, “Common Criteria for Information
Technology Security Evaluation,” Common Criteria Recognition Arrangement, Tech.
Rep. CC:2022 Release 1, Nov. 2022. (visited on 07/19/2023).

169

[13] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the Mirai Botnet,” in
26th USENIX Security Symposium (USENIX Security 17), 2017, pp. 1093–1110,
isbn: 978-1-931971-40-9. (visited on 02/03/2022).

[14] B. A. Karpf, “Dead reckoning : Where we stand on privacy and security controls for
the Internet of Things,” Thesis, Massachusetts Institute of Technology, 2017. (visited
on 11/18/2017).

[15] B. Schneier, The Internet of Things Is Wildly Insecure — And Often Unpatchable,
https://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-
and-thats-a-huge-problem/, Jan. 14. (visited on 12/14/2016).

[16] K. R. Sollins, “IoT Big Data Security and Privacy Versus Innovation,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1628–1635, Apr. 2019, issn: 2327-4662. doi:
10.1109/JIOT.2019.2898113.

[17] O. Yoachimik, DDoS Attack Trends for 2022 Q1,
http://blog.cloudflare.com/ddos-attack-trends-for-2022-q1/, Apr. 2022. (visited on
10/05/2022).

[18] O. Yoachimik, DDoS Attack Trends for 2022 Q2,
http://blog.cloudflare.com/ddos-attack-trends-for-2022-q2/, Jul. 2022. (visited on
10/05/2022).

[19] A. Gutnikov, O. Kupreev, and Y. Shmelev, “DDoS attacks in Q2 2022,” Kaspersky
Securelink, White Paper Q22022, Aug. 22. (visited on 10/06/2022).

[20] V. D. Gligor, “A Note on Denial-of-Service in Operating Systems,” IEEE
Transactions on Software Engineering, vol. SE-10, no. 3, pp. 320–324, May 1984,
issn: 1939-3520. doi: 10.1109/TSE.1984.5010241.

[21] R. M. Needham, “Denial of service,” in Proceedings of the 1st ACM Conference on
Computer and Communications Security, 1993, pp. 151–153.

[22] J. Mirkovic and P. Reiher, “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 39–53, Apr.
2004, issn: 0146-4833. doi: 10.1145/997150.997156. (visited on 12/13/2016).

[23] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted Denial of Service
Attacks: The Shrew vs. The Mice and Elephants,” in Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’03, New York, NY, USA: ACM, 2003, pp. 75–86,
isbn: 978-1-58113-735-4. doi: 10.1145/863955.863966. (visited on 11/16/2017).

[24] M. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll, and k. claffy, “Network
Hygiene, Incentives, and Regulation: Deployment of Source Address Validation in the
Internet,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, London United Kingdom: ACM, Nov. 2019, pp. 465–480,
isbn: 978-1-4503-6747-9. doi: 10.1145/3319535.3354232. (visited on 09/20/2021).

170

https://doi.org/10.1109/JIOT.2019.2898113
https://doi.org/10.1109/TSE.1984.5010241
https://doi.org/10.1145/997150.997156
https://doi.org/10.1145/863955.863966
https://doi.org/10.1145/3319535.3354232

[25] R. Beverly, A. Berger, Y. Hyun, and k. claffy, “Understanding the Efficacy of
Deployed Internet Source Address Validation Filtering,” in Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’09, New York,
NY, USA: ACM, 2009, pp. 356–369, isbn: 978-1-60558-771-4. doi:
10.1145/1644893.1644936. (visited on 11/17/2017).

[26] Anna-senpai, Mirai Source Code, https://github.com/jgamblin/Mirai-Source-Code,
Oct. 2016. (visited on 12/13/2016).

[27] Cloudflare, What is the Mirai Botnet?
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/. (visited on
06/28/2023).

[28] I. Zeifman, D. Bekerman, and B. Herzberg, Breaking Down Mirai: An IoT DDoS
Botnet Analysis,
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html, Oct.
2016. (visited on 12/13/2016).

[29] Internet Engineering Task Force, RFC Index,
https://www.rfc-editor.org/rfc-index.html. (visited on 07/19/2023).

[30] Cloudflare, What is DDoS mitigation?
https://www.cloudflare.com/learning/ddos/ddos-mitigation/. (visited on
06/09/2023).

[31] Apposite Technologies, What is Deep Packet Inspection (DPI)?
https://www.apposite-tech.com/what-is-deep-packet-inspection-dpi/, Jul. 2021.
(visited on 06/28/2023).

[32] R. Derby, Detect, Prevent, Improve with Scalable DPI,
https://www.netscout.com/blog/detect-prevent-improve-scalable-dpi, Feb. 23.
(visited on 06/28/2023).

[33] Fortinet, What Is Deep Packet Inspection (DPI)?
https://www.fortinet.com/resources/cyberglossary/dpi-deep-packet-inspection.
(visited on 06/28/2023).

[34] M. A. DeRose, “Deep Packet Inspection and its Effects On Net Neutrality,” Ph.D.
dissertation, Regis University, 2010. (visited on 06/28/2023).

[35] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A Survey on
Bias and Fairness in Machine Learning,” ACM Computing Surveys, vol. 54, no. 6,
pp. 1–35, Jul. 2022, issn: 0360-0300, 1557-7341. doi: 10.1145/3457607. (visited on
06/28/2023).

[36] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A
survey,” in 2018 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 0210–0215.
doi: 10.23919/MIPRO.2018.8400040.

[37] Damian Menscher, Exponential Growth in DDoS Attack Volumes,
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-
against-the-largest-ddos-attacks, Oct. 2020. (visited on 06/09/2023).

171

https://doi.org/10.1145/1644893.1644936
https://doi.org/10.1145/3457607
https://doi.org/10.23919/MIPRO.2018.8400040

[38] W. M. Eddy, “TCP SYN flooding attacks and common mitigations,” Internet
Engineering Task Force, RFC 4987, 2007. (visited on 12/13/2016).

[39] R. Stewart, “Stream Control Transmission Protocol,” Internet Engineering Task
Force, RFC 4960, Sep. 2007. (visited on 11/16/2017).

[40] J. Lemon, “Resisting {SYN} flood {DoS} attacks with a {SYN} cache,” in BSDCon
2002, 2002, pp. 89–98.

[41] C. Smith and A. Matrawy, “Comparison of operating system implementations of
SYN flood defenses (Cookies),” in 2008 24th Biennial Symposium on
Communications, Kingston, ON, Canada: IEEE, Jun. 2008, pp. 243–246. doi:
10.1109/BSC.2008.4563248.

[42] Cloudflare, Understanding the Cloudflare Browser Integrity Check,
https://support.cloudflare.com/hc/en-us/articles/200170086-Understanding-the-
Cloudflare-Browser-Integrity-Check, 2022. (visited on 04/29/2022).

[43] CAPTCHA, The Official CAPTCHA Site, http://www.captcha.net/, 2022. (visited
on 04/29/2022).

[44] Google, reCAPTCHA, https://www.google.com/recaptcha/about/, 2022. (visited on
04/29/2022).

[45] T. Meunier, Humanity wastes about 500 years per day on CAPTCHAs. It’s time to
end this madness,
http://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/,
May 2021. (visited on 04/29/2022).

[46] J. Beal and T. Shepard, “Deamplification of DoS Attacks via Puzzles,” ResearchGate,
2004. (visited on 07/30/2023).

[47] S. Stidham, “Optimal control of admission to a queueing system,” IEEE Transactions
on Automatic Control, vol. 30, no. 8, pp. 705–713, Aug. 1985, issn: 1558-2523. doi:
10.1109/TAC.1985.1104054.

[48] P. Naor, “The Regulation of Queue Size by Levying Tolls,” Econometrica, vol. 37,
no. 1, pp. 15–24, 1969, issn: 0012-9682. doi: 10.2307/1909200. JSTOR: 1909200.
(visited on 03/20/2023).

[49] J. Mirkovic, A. Hussain, S. Fahmy, P. Reiher, and R. K. Thomas, “Accurately
Measuring Denial of Service in Simulation and Testbed Experiments,” IEEE
Transactions on Dependable and Secure Computing, vol. 6, no. 2, pp. 81–95, Apr.
2009, issn: 1545-5971. doi: 10.1109/TDSC.2008.73.

[50] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R. Thomas, W.-M. Yao,
and S. Schwab, “Towards user-centric metrics for denial-of-service measurement,” in
Proceedings of the 2007 Workshop on Experimental Computer Science, ser. ExpCS
’07, New York, NY, USA: Association for Computing Machinery, Jun. 2007, 8–es,
isbn: 978-1-59593-751-3. doi: 10.1145/1281700.1281708. (visited on 07/08/2022).

172

https://doi.org/10.1109/BSC.2008.4563248
https://doi.org/10.1109/TAC.1985.1104054
https://doi.org/10.2307/1909200
http://www.jstor.org/stable/1909200
https://doi.org/10.1109/TDSC.2008.73
https://doi.org/10.1145/1281700.1281708

[51] J. Mirkovic, P. Reiher, S. Fahmy, R. Thomas, A. Hussain, S. Schwab, and C. Ko,
“Measuring Denial Of Service,” in Proceedings of the 2Nd ACM Workshop on Quality
of Protection, ser. QoP ’06, New York, NY, USA: ACM, 2006, pp. 53–58, isbn:
978-1-59593-553-3. doi: 10.1145/1179494.1179506. (visited on 01/18/2018).

[52] J. J. Echevarria, P. Garaizar, and J. Legarda, “An experimental study on the
applicability of SYN cookies to networked constrained devices,” Software: Practice
and Experience, vol. 48, no. 3, pp. 740–749, 2018, issn: 1097-024X. doi:
10.1002/spe.2510. (visited on 10/01/2021).

[53] D. Scholz, S. Gallenmüller, H. Stubbe, B. Jaber, M. Rouhi, and G. Carle, Me Love
(SYN-)Cookies: SYN Flood Mitigation in Programmable Data Planes, Mar. 2020.
doi: 10.48550/arXiv.2003.03221. arXiv: 2003.03221 [cs]. (visited on 07/08/2022).

[54] M. A. Noureddine, A. M. Fawaz, A. Hsu, C. Guldner, S. Vijay, T. Başar, and
W. H. Sanders, “Revisiting Client Puzzles for State Exhaustion Attacks Resilience,”
in 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Jun. 2019, pp. 617–629. doi: 10.1109/DSN.2019.00067.

[55] S. DeLaughter and K. Sollins, “Context Matters: Accurately Measuring the Efficacy
of Denial-of-Service Mitigations,” in Proceedings of the 15th Workshop on Cyber
Security Experimentation and Test, ser. CSET ’22, New York, NY, USA: Association
for Computing Machinery, Aug. 2022, pp. 91–99, isbn: 978-1-4503-9684-4. doi:
10.1145/3546096.3546109. (visited on 03/20/2023).

[56] M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic
applications,” in Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, ser. STOC ’89, New York, NY, USA: Association for Computing
Machinery, Feb. 1989, pp. 33–43, isbn: 978-0-89791-307-2. doi: 10.1145/73007.73011.
(visited on 07/19/2023).

[57] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Cryptographic Hash Functions: A
Survey,” Survey, Center for Computer Security Research, Department of Computer
Science, University of Wollongong, 1995. (visited on 07/27/2023).

[58] R. Sobti and G. Geetha, “Cryptographic Hash Functions: A Review,” International
Journal of Computer Science Issues, vol. 9, no. 2, Mar. 2012, issn: 1694-0814.
(visited on 07/27/2023).

[59] C. Dwork and M. Naor, “Pricing via Processing or Combatting Junk Mail,” in
Advances in Cryptology — CRYPTO’ 92, E. F. Brickell, Ed., vol. 740, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 139–147, isbn: 978-3-540-57340-1.
doi: 10.1007/3-540-48071-4_10. (visited on 09/16/2020).

[60] B. Laurie and R. Clayton, “"Proof-of-Work" Proves Not to Work,” 3rd Annual
Workshop on Economics and Information Security, p. 9, 2004.

[61] S. Nakamoto, “Bitcoin: A peer-to-peer electronic Cash System,” bitcoin.org, 2008.
(visited on 07/27/2023).

173

https://doi.org/10.1145/1179494.1179506
https://doi.org/10.1002/spe.2510
https://doi.org/10.48550/arXiv.2003.03221
https://arxiv.org/abs/2003.03221
https://doi.org/10.1109/DSN.2019.00067
https://doi.org/10.1145/3546096.3546109
https://doi.org/10.1145/73007.73011
https://doi.org/10.1007/3-540-48071-4_10

[62] J. Li, N. Li, J. Peng, H. Cui, and Z. Wu, “Energy consumption of cryptocurrency
mining: A study of electricity consumption in mining cryptocurrencies,” Energy,
vol. 168, pp. 160–168, 2019.

[63] J. Sedlmeir, H. U. Buhl, G. Fridgen, and R. Keller, “The Energy Consumption of
Blockchain Technology: Beyond myth,” Business & Information Systems
Engineering, vol. 62, no. 6, pp. 599–608, 2020. (visited on 07/19/2023).

[64] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” in Symposium
Proceedings on Communications Architectures and Protocols, ser. SIGCOMM ’88,
New York, NY, USA: ACM, 1988, pp. 106–114, isbn: 978-0-89791-279-2. doi:
10.1145/52324.52336. (visited on 12/13/2016).

[65] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end Arguments in System
Design,” ACM Transactions on Computer Systems, vol. 2, no. 4, pp. 277–288, Nov.
1984, issn: 0734-2071. doi: 10.1145/357401.357402. (visited on 01/31/2019).

[66] eBPF, https://ebpf.io. (visited on 03/27/2023).

[67] L. Torvalds, Linux kernel source tree,
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c04c0d2b968ac45d6ef020316808ef6c82325a82.
(visited on 07/14/2023).

[68] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching for local
computer networks,” Communications of the ACM, vol. 19, no. 7, pp. 395–404, Jul.
1976, issn: 0001-0782, 1557-7317. doi: 10.1145/360248.360253. (visited on
06/26/2021).

[69] W. Eddy, “Transmission Control Protocol (TCP),” Internet Engineering Task Force,
Request for Comments RFC 9293, Aug. 2022. doi: 10.17487/RFC9293. (visited on
07/18/2023).

[70] F. Gont and S. Bellovin, “Defending against Sequence Number Attacks,” Internet
Engineering Task Force, Request for Comments RFC 6528, Feb. 2012. doi:
10.17487/RFC6528. (visited on 04/26/2022).

[71] J. Postel, “Transmission Control Protocol,” Internet Engineering Task Force, RFC
793, 1981.

[72] K. A. Hua, N. Jiang, J. Kuhns, V. Sundaram, and C. Zou, “Redundancy control
through traffic deduplication,” in 2015 IEEE Conference on Computer
Communications (INFOCOM), Apr. 2015, pp. 10–18. doi:
10.1109/INFOCOM.2015.7218362.

[73] K. Akpınar and K. A. Hua, “Deduplication overlay network,” in 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA), Oct.
2017, pp. 1–9. doi: 10.1109/NCA.2017.8171369.

[74] M. Ruiz, G. Sutter, S. López-Buedo, J. F. Zazo, and J. E. López de Vergara, “An
FPGA-based approach for packet deduplication in 100 gigabit-per-second networks,”
in 2017 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Dec. 2017, pp. 1–6. doi: 10.1109/RECONFIG.2017.8279776.

174

https://doi.org/10.1145/52324.52336
https://doi.org/10.1145/357401.357402
https://doi.org/10.1145/360248.360253
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC6528
https://doi.org/10.1109/INFOCOM.2015.7218362
https://doi.org/10.1109/NCA.2017.8171369
https://doi.org/10.1109/RECONFIG.2017.8279776

[75] M. Yoon, “A constant-time chunking algorithm for packet-level deduplication,” ICT
Express, vol. 5, no. 2, pp. 131–135, Jun. 2019, issn: 2405-9595. doi:
10.1016/j.icte.2018.05.005. (visited on 07/30/2023).

[76] J. Martin, J. Burbank, W. Kasch, and P. D. L. Mills, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” Internet Engineering Task Force,
Request for Comments RFC 5905, Jun. 2010. doi: 10.17487/RFC5905. (visited on
07/30/2023).

[77] P. Hsieh, Hash Functions, http://www.azillionmonkeys.com/qed/hash.html, Blog,
2004. (visited on 06/13/2023).

[78] M. Kucherawy, D. Crocker, and T. Hansen, “DomainKeys Identified Mail (DKIM)
Signatures,” Internet Engineering Task Force, Request for Comments RFC 6376, Sep.
2011. doi: 10.17487/RFC6376. (visited on 06/15/2023).

[79] E. Blanton, V. Paxson, and M. Allman, “TCP Congestion Control,” Internet
Engineering Task Force, Request for Comments RFC 5681, Sep. 2009. doi:
10.17487/RFC5681. (visited on 07/14/2023).

[80] nsnam, Ns-3 Network Simulator, https://www.nsnam.org/. (visited on 07/20/2023).
[81] Mininet Project Contributors, Mininet, http://mininet.org/. (visited on 07/20/2023).
[82] USC Information Sciences Institute and University of Utah, DeterLab: Cyber-Defense

Technology Experimental Research Laboratory,
https://www.isi.deterlab.net/index.php. (visited on 05/31/2020).

[83] Red Hat, Ansible, https://www.ansible.com. (visited on 07/27/2023).
[84] NSF, NSF Future Internet Architecture Project, http://www.nets-fia.net/. (visited on

12/14/2016).
[85] Named Data Networking, https://named-data.net/. (visited on 12/14/2016).
[86] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,

C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, p. 8, 2014.

[87] MobilityFirst FIA Overview, http://mobilityfirst.winlab.rutgers.edu/. (visited on
12/14/2016).

[88] A. Farhat, S. DeLaughter, and K. Sollins, “Measuring and Analyzing DoS Flooding
Experiments,” in Proceedings of the 15th Workshop on Cyber Security
Experimentation and Test, ser. CSET ’22, New York, NY, USA: Association for
Computing Machinery, Aug. 2022, pp. 81–90, isbn: 978-1-4503-9684-4. doi:
10.1145/3546096.3546105. (visited on 08/28/2023).

[89] S. E. Deering and B. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”
Internet Engineering Task Force, Request for Comments RFC 1883, Dec. 1995. doi:
10.17487/RFC1883. (visited on 07/18/2023).

[90] Google, Google IPv6 Statistics,
https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption. (visited
on 07/10/2023).

175

https://doi.org/10.1016/j.icte.2018.05.005
https://doi.org/10.17487/RFC5905
https://doi.org/10.17487/RFC6376
https://doi.org/10.17487/RFC5681
https://doi.org/10.1145/3546096.3546105
https://doi.org/10.17487/RFC1883

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Structure of Remaining Chapters
	1.2 Key Contributions

	2 Problem Statement
	3 Background
	3.1 DoS Attack Classification
	3.1.1 Volumetric vs. Targeted Attacks
	3.1.2 Address Spoofing
	3.1.3 Packet Types
	3.1.4 Other

	3.2 Existing DoS Mitigations
	3.2.1 Traffic Filtering
	3.2.2 Over-Provisioning
	3.2.3 Protocol Modifications
	3.2.4 Summary

	3.3 DoS Measurement
	3.4 Proof-of-Work

	4 Designing Trustworthy Independent Packets
	4.1 General Design
	4.2 Implementations in TCP
	4.2.1 eBPF
	4.2.2 SYN Padding
	4.2.3 SYN Proof-of-Work

	4.3 Summary

	5 Metrics and Measurement Techniques
	5.1 Experiment Model
	5.2 Testbed Environment
	5.3 Performance Metrics
	5.4 Context-Specific Metrics
	5.5 Cross-Context Metrics
	5.6 Summary

	6 Empirical Analysis
	6.1 Experiment Topology
	6.2 SYN Cookies
	6.3 SYN Padding
	6.3.1 Traffic Rate/Volume Reduction
	6.3.2 Client Overhead and QoS Impact

	6.4 SYN PoW
	6.4.1 Traffic Rate/Volume Reduction
	6.4.2 Client Overhead and QoS Impact

	7 Discussion
	7.1 Non-TCP Implementations
	7.1.1 Padding
	7.1.2 Proof-of-Work

	7.2 IPv6 Support
	7.3 Hash-Sorted Queuing
	7.4 Protocol and Architecture Comparison
	7.5 Additional Metrics
	7.5.1 Economic Cost Modeling
	7.5.2 Time-Series Analysis
	7.5.3 Estimating Attack Probabilities

	7.6 Attack Traffic Generation
	7.7 Data Analysis Pipeline
	7.8 Deployment Considerations
	7.9 Summary

	8 Conclusion
	Bibliography

